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Abstract
Flight data mining enables airport owners, operators, and governmental entities to explore more intelligent management
strategies; in particular, cost-effectively obtaining accurate operational data is beneficial for general aviation airports
and their associated communities. The current data collection modus operandi, however, does not meet future needs,
as aircraft operations are counted manually or estimated by sampling methods. The increasing traffic flow and limited
available personnel at most general aviation airports make it unrealistic to continue using traditional methods to analyze
aircraft operational statistics; therefore, a customized approach is needed to address this problem. Since different flight
phases have different levels and types of impacts on the environment, acquiring information related to the duration of each
flight phase at the airport and within its surrounding airspace is critical to the assessment of emissions and noise pollution
from aircraft. The primary goal of the research is to provide quantified inputs for the environmental evaluation model, such
as the Aviation Environmental Design Tool (AEDT). This paper demonstrates a programmed framework that successfully
achieves satisfactory performance in solving flight phase identification problems by testing the synthetic flight data as well
as validating the empirical ADS-B data. The experimental results suggest that the proposed methods achieve promising
classification accuracy, leading to feasible deployment in airport operations.
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There exists a large number of general aviation (GA)
airports in the United States with limited or nonexistent air
traffic control facilities (1). Both government regulators and
airport owners need accurate operational statistics to facilitate
airport planning, environment impact estimation, and funding
allocation, as well as economic impact forecasting (2, 3).
Federal Airport Improvement Program (AIP) grants are one
of the primary sources for airport development, especially
for small airports (4). The funding amount is justified
by demand or passenger volume and granted to airports
accordingly. Currently, however, operational statistics such
as the number of operations (take-offs and landings) are
collected by air traffic personnel at towered airports and
estimated by sample counts or other methods at nontowered
airports (5, 6). In the meantime, with the implementation
of regulations (7) starting from January 2020, Automatic
Dependent Surveillance-Broadcast (ADS-B) equipment is a
mandated requirement to operate in most controlled airspace
in the national airspace system. This new policy offers an
opportunity to obtain previously unknowable details of flight
operations. Because ADS-B contains a significant amount of
data related to flight operations, these data may be considered
a multivariate time-series sequence, as ADS-B receivers

collect a series of measurements of multiple flight status
attributes. The process of classifying empirical flight data,
known as flight phase identification, can facilitate the more
accurate estimation of flight operations.

Broad Impact
The quantification of the flight phase duration contributes
to various studies, including the measurement of aircraft
emissions, noise pollution impact, and airport capacities.
Consider the emission problem as an example. Only by
accurately obtaining the duration of different flight phases
is it possible to understand the impact of different types of
emissions, which, in turn, can facilitate further environmental
evaluation for airports and their associated communities.
Such evaluation could determine the characterization
of the distribution of concentrations of airborne trace
elements in the vicinity of the airport with general
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aircraft operations. For example, leaded aviation gasoline
contributes the most significant proportion source of lead
(Pb) emissions, exposing at-risk groups to adverse health
impacts, particularly neurological effects in children (8). U.S.
Environmental Protection Agency (EPA) estimates that 16
million people live within one kilometer of airports where
the aircraft operate on leaded fuel, and three million children
attend school within one kilometer of these facilities (9).
Given the significant impact of the potential health risks,
evaluating exposure emissions such as lead from piston-
engine emissions would help inform policy.

The Aviation Environmental Design Tool (AEDT) came
into being as the primary environmental model used
to estimate aviation noise and exhaust emissions. The
AEDT system “models aircraft performance in space
and time to estimates fuel burn, emissions, and noise
consequences” according to the description from Federal
Aviation Administration (FAA) (10). The operational
statistics, i.e., phase duration inputs for the landing and take-
off (LTO) model, drive the system model estimates (11).
Specifically, high hydrocarbon (HC) and carbon monoxide
(CO) emissions account for a considerable portion of the
taxi phase, but the highest nitrogen oxides (NOx) emissions
occur during take-off. Therefore, different pollutants are
predominant during different flight phases (12). Hence, a
feasible means to obtain statistics related to the duration
of each flight phase will be helpful to construct summary
information for aircraft operations and these environment
impact estimates (13).

Literature Review
There are two main types of methods commonly used to
sample historical aircraft traffic data at non-towered airports
(2). One of them is to deploy air traffic counters by collecting
acoustic, pneumatic, and visual image information (2, 3).
Another is by soliciting information from airport personnel
or applying statistical methods using airport guest logs
or fuel sales (2, 6). Specifically, airport managers may
sample traffic for two weeks for each of the four seasons
and extrapolate that sample into an annual estimate (3).
An FAA capstone program report (14) documented how
these methods are applied in southeast Alaska airports. The
literature mentioned above indicates that these two types of
methods have problems of high cost and low accuracy.

On the other hand, ADS-B data is known for its high-
frequency update capability and low cost (7). However,
the effort to analyze flight records derived from ADS-B
transmissions can also be challenging for several reasons
(15). First, due to the large amounts of cumulative data with
low information densities, extracting the desired information
from the dataset may be time-consuming. For example,
data metrics calculation or visualization requires significant
computing power. Consequently, manually processing and
analyzing the rapidly accumulated ADS-B data may be

unrealistic. Second, noise caused by dipole receiving antenna
characteristics may lead to discontinuous sampled and lost
data at certain orientations, especially at lower altitudes,
such as the taxi phase. Higher gain antennas, although
increasing the strength of the received signal, thereby
allowing better information transfer, have a narrower antenna
pattern, leading to some dead spots (16). These phenomena
may increase the difficulty of precise classification. Lastly,
ADS-B has some inherent limitations, such as providing
ground speed (GS) instead of true air speed (TAS). These
two quantities are identical only if the wind speed equals
zero. Otherwise, the conversion of these two values under
non-ideal conditions requires the introduction of wind speed
data from a meteorological database. The reasons mentioned
above constitute the challenge to effectively identify the
corresponding flight phase classification from the ADS-B
data.

Several recent research approaches attempt to solve the
problem in different ways. Tian et al. (17) explored a method
of dividing the flight phase based on a decision tree. Although
the classifier achieved respectable results, the small scale of
flight experiments leads to concerns over the construction of
the decision tree. The stability of model parameters may be
affected significantly by individual data; therefore, the model
may be optimized only for specific datasets. Sun et al. (18)
and Goblet (19) each propose a twofold method by clustering
scattered data and labeling phases. Specifically, they first
used unsupervised machine learning methods such as k-
means (20), DBSCAN (Density-Based Spatial Clustering of
Application with Noise) (21), BIRCH (Balanced Iterative
Reducing and Clustering using Hierarchies) (22), and
TICC (Toeplitz Inverse Covariance-based Clustering) (23) to
segment data into clusters. Subsequently, these data slices
are labeled with correct flight phases by Boolean reasoning
(24), decision trees (25), or fuzzy logic (26). Many other
studies related to ADS-B identification data mining focus
primarily on traffic flow classification (27, 28), specific
maneuver pattern recognition (29, 30), and collision behavior
detection (31, 32). Hence, developing a data-driven approach
will facilitate the quantification of operations estimates
for general aviation airports (33). This article proposes
a promising accurate and efficient method to address the
problem of classifying and labeling large quantities of flight
data.

Data Preparation
The preliminary experiment selected two years of data
(2019 to 2020) collected by ADS-B receiving equipment
installed at the Purdue University Airport (KLAF). The data
was then subsetted in a time range of interest, cleared of
entries with missing values, and corrected for atmospheric
pressure variations by obtaining the compiled Meteorological
Terminal Air Report (METAR) data. Figure 1 shows two
flight trajectories composed of data points. The motion of the

Prepared using TRR.cls



Zhang and Mott 3

two aircraft is clearly divided into several segments marked
by different colors according to the ICAO phase definitions
(34). However, it also can be seen that the trajectory’s pattern
in Figure 1b is not as continuous as the one in Figure 1a. This
common situation depicts the flaws in the ADS-B data, in that
some data may be lost due to multiple factors such as antenna
orientation, possibly leading to inaccurate statistics.

Altitude (ft)

Longitude Latitude

Cruise 1 
Cruise 2 
Descent 1 
Descent 2 
Descent 3

(a) This sample is extracted from the aircraft coded AA63F1 on
August 17, 2020, from 01:07 to 01:51 in Eastern Standard Time.

Altitude (ft)

Longitude

Latitude

Climb 1 
Climb 2 
Climb 3 
Cruise 1 
Descent 1

(b) This sample is extracted from the aircraft coded ABB72E on
August 16, 2020, from 21:53 to 22:25 in Eastern Standard Time.

Figure 1. Flight trajectory examples with empirical ADS-B data
that are clustered and labeled by the TICC algorithm and fuzzy
logic.

Because an empirical ADS-B dataset does not contain a
means of validating phases of flight (35), there is no basis on
which to compare the solution of each algorithm. It is also
challenging to manually determine the corresponding label
for such a large quantity of data. Therefore, synthetic data
are introduced to evaluate the effectiveness of the algorithms,
produced with an initial label, which can be stored to validate
the accuracy of the models’ judgment (13). Six different
phases, i.e., Taxi, Takeoff, Climb, Cruise, Descent, Approach,

are defined in this synthetic data generation process. These
data record changes in the simulated operation of the aircraft
as an ADS-B receiver does.

Every simulation contains an aircraft generated at
simulation time t0. A random acceleration vector is then
assigned to this aircraft every second to accomplish a
complete LTO cycle along the designated flight trajectory.
Other attributes such as position (longitude, latitude),
altitude, and GS can be calculated based on the acceleration
and the previous position. Here, a simplified estimation
is performed to reduce the computation. Specifically, the
aircraft velocity vector, including speed and track, is constant
during the fixed update interval, i.e., every second. As a
result, the data series at each moment includes not only flight
attributes such as location coordinate, ground speed, track,
and heading, which are the same as those of the empirical
ADS-B data, but also includes corresponding phase labels
and derived information such as altitude and rate of change of
velocity. The aircraft will remain associated with a consistent
phase label and continuously slightly different acceleration
vectors within a random duration. After the previous time
slot, the acceleration vector will change drastically, and the
label will advance to the next phase. Furthermore, normally
distributed random error is appended to simulate the signal
noise. Figure 2 depicts an example of the synthetic data in a
three-dimensional plot. Finally, each set of simulation results
are added to an integrated database. Two synthetic datasets
were generated, marked as the training set (1,200 simulations
with 2,590,889 data points) and the test set (200 simulations
with 429,145 data points), respectively.

Altitude (ft)

Longitude*Latitude*

Taxi 1 
Take-off 
Climb 
Cruise

Descent 
Approach 
Taxi 2

Figure 2. Flight trajectory example with synthetic ADS-B data.
All points are generated with initial phase labels. The latitude*
and longitude* here do not represent the actual measurement
but only the relative movement on the plane.
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Methodology

Two different methods are presented individually in this
section to address the classification problem. Additionally,
these two methods are integrated to further enhance model
performance.

AdaBoost
AdaBoost (36, 37), short for Adaptive Boosting, is a meta-
algorithm, also known as an ensemble learning technique.
The main idea is to combine weak learners, the accuracy of
which is slightly better than random guessing in a binary
classification problem, to form a “strong learner” that can
more effectively classify “difficult” examples. This type
of machine learning algorithm generally achieves better
predictive performance than could be obtained from any
of the constituent learners alone (38, 39). To address the
problem of phase identification, a single-phase label is
expanded into multiple phases’ binary judgment (“0” for
“false”, “1” for “true”). For example, if a data point belongs
to “climb”, it will be assigned 1 in the phase attribute Climb,
and 0 in the other phase attributes, e.g., Taxi and Cruise. Four
flight attributes (altitude, GS, altitude change rate, and GS
change rate) are selected as universalized input x since they
are the fundamental and representative identifiers in phase
classification. In other words, the phase transition occurs in
the dynamic changes of these four variables. The selection of
the input feature vectors is also based on the consideration of
simplification to merge ADS-B data with other data sources,
thereby making up for the lack of some missing ADS-B
data in the future. Six binary phase classification models are
then trained by leveraging the scikit-learn Python machine
learning library’s AdaBoostClassifier module (40) to apply
the AdaBoost algorithm.

Algorithm 1: AdaBoost Learning Algorithm
Input: Training set S with four attributes, decision tree

classifier as base learner A, initial weight
Dt = {D1(1), · · · , D1(N)};

1 Initialization: D1(i) =
1
N
, ∀i;

2 for t = 1 to T do
3 Obtain a classifier: ht ← A(S,Dt);
4 Calculate importance factor βt for ht: βt =

1
2
ln 1−ϵt

ϵt
,

where weighted error of ht is:
ϵt =

∑N
n=1 Dt(n)I(ht(xn) ̸= yn);

5 Update weights as follows:
Dt+1(n) =

Dt(n) exp(−βtytht(xn))
Zt

6 The denominator Zt ensures all Dt+1 sum to 1, where
Zt =

∑N
n=1 Dt(n) exp(−βtytht(xn))

7 end
8 return the final classifier H(x) = sgn(

∑T
t=1 βtht(x)).

The complete learning process of AdaBoost is shown in
Algorithm 1. Here, the base algorithm can be formalized as

min

N∑
i=1

Dt(i)L(xi, yi). (1)

The input data is {(xi, yi)} and L(xi, yi) denotes the
loss function. Dt(i) represents the weight of the loss
function at time step t. hi(x) is a weak classifier whose
accuracy is slightly greater than 50%, i.e., error ϵt ≤ 50%.
The final classifier H(x) can be expressed as H(x) =

sgn(
∑T

1 βtht(x)). It can be shown (37) that the total
error rate of this output classifier is bounded as shown in
Formula (2). Since ϵ < 0.5 ⇒ 2

√
ϵt(1− ϵt) < 1, the total

error converges quickly to 0 as t increases.

1

N

N∑
i=1

I(H(xi) ̸= yi) ≤
T∏

t=1

2
√

ϵt(1− ϵt). (2)

Subsequently, to predict the phase, all the points in the
data are traversed and trained models determine whether
they belong to a particular phase. The output is six new
columns filled with binary prediction. In most cases, the sum
of these six numbers in every row is exactly “1” as every
data point only belongs to one phase. Specifically, 5 (cols.)×
0 (false) + 1(col.)× 1(true) = 1. The prediction result can
then be determined by which phase column equals 1, i.e.,
“true” for this phase. For example, “1” in the column
Climb Predict and the other five all with “0” indicate that
the prediction result is Climb. However, the phase prediction
will be classified as Unknown if the sum is not equal
to one. Consequently, Figure 3 depicts the increase of
accuracy (defined as #correctly predicted data items

#total data items × 100%) for the
test dataset as the size of the training dataset increases. The
60 scattered x marks in Figure 3 represent the number of
the trained data series for the AdaBoost method, ranging
from 5,000 to 2,500,000 series. The corresponding base e
logarithm value is from 8.52 to 14.73. The final accuracy of
AdaBoost stabilizes at roughly 98%. The other two methods
displayed in Figure 3 will be described in subsequent
sections.

Probability Distribution
The Probability Distribution method attempts to utilize the
a priori probability by extracting the phase characteristic
information from the training data. Specifically, data xi,k ∈
RN×K in training set S with K attributes and N rows
has a corresponding interval and probability value in every
flight phase’s probability density function (PDF) fc,k(xi,k).
It is apparent that

∫ +∞
−∞ fc(x)dx = 1 for a certain attribute

k as the sum of the probabilities of all outcomes must
equal 1. Here, k denotes the attributes such as altitude,
and c represents the assigned classification code, such as
“3” for cruise, “5” for approach, et cetera. For example,
assume that an aircraft is operating at 800 ft at a certain
moment. f5,alt(800) is greater than f3,alt(800) as shown
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Figure 3. Scatter plot to show the increase of the accuracy for the test dataset as the size of the training dataset increases for all
methods. The dependent variable has a natural log transformation applied. All three methods’ trend lines are based on polynomial
regression.

in Figure 4. It means that the aircraft is more inclined
to be in the status “approach” rather than “cruise” at this
altitude. In this case, all random variables of attributes are
assumed to be independent so that their joint probability is
the product of their marginal densities. The correlation matrix
of four variables is provided in Table 1. The overall objective
turns into finding maxima c = argmax

c∈C

∏K
k=1 fc,k(xi,k) for

the ith data item. Particularly, to utilize the continuity of
chronological data, the regularization parameter λ is selected
to encourage similar classification of neighboring data. As
λ approaches infinity, the classification of the previous data
item becomes more influential on the next item, i.e., they
tend to be classified as the same phase. Therefore, the final
objective function is formulated as:

argmax
c∈C

K∏
k=1

fc,k(xi,k) + λ

K∏
k=1

fc,k(xi−1,k) (3)

Table 1. Correlation matrix of random variables.

Alt GS Alt rate GS rate
Alt 1.000 - - -
GS 0.484 1.000 - -

Alt rate 0.002 -0.007 1.000 -
GS rate 0.002 0.010 0.123 1.000

Altitude (ft)

Cruise
Descent
Approach

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000
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Figure 4. Histogram plot with 50 bins to demonstrate altitude
probability distribution. The data is sampled from the training set
containing 2,590,888 items.

Hybrid Method

To further improve the rate of correct prediction, the
probability distribution method is integrated into the
AdaBoost method to take advantage of both methods’
strengths. Specifically, as mentioned previously, there are
some Unknown data points in the AdaBoost prediction. If
this is the case, the original attributes of this input will be
transferred to the probability distribution method for further
analysis. Consequently, the two methods’ combination is
employed to improve the solution performance. Figure 5
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illustrates the basic process structure of the methodology with
an overall framework and individual components.

Implementation and Results

Performance Metrics
In order to verify the effectiveness of the two methods,
there are two perspectives for consideration, i.e., from the
individual data point and from the duration of each phase.
For the former, the evaluation focuses on the quality of
classification. Therefore, Table 2 reports the precision, recall,
and F-1 score for each phase. In particular, the summarized
F-1 score for the entire prediction here averages the total true
positives, false negatives, and false positives. This practice is
usually referred to as micro averaging in multi-classification
problems. In this case, the following equation always holds
true: micro-F1 = micro-precision = micro-recall = overall
accuracy. These metrics are all listed in Table 3 under the
Accuracy column.

If one treats data in the same category as an aggregate,
Symmetric Mean Absolute Percentage Error (SMAPE) is
chosen as an evaluation metric. This metric reflects the
relative errors (deviation ratio) to the overall flight duration
quantity. Formula (4) describes the measurement procedure.
N is the total number of the aircraft in the test dataset,
c still represents the number of phases, Fnc indicates the
predicted time, and Anc indicates ground-truthing phase
duration; accordingly, ∆Tnc is the calculation deviation.
Furthermore, predicted total time Fn and real total time An

can be substituted by Tntotal as all of them are equal.

SMAPE =
100%

N

N∑
n=1

∑c
1 |Fnc −Anc|
|An|+ |Fn|

=
100%

N

N∑
n=1

∑c
1 |∆Tnc|

2 · Tntotal

(4)

Comparison
Table 3 reports the performance of the two methods and
their combination. Additionally, the multi-class AdaBoost
is investigated, and its result is given. Other traditional
methodologies are also introduced as the baselines to
demonstrate the performance boost. It is reasonable to see
that the accuracy of the test set has a minor decrease
compared to the training set. Nevertheless, the accuracy
improvement of the proposed models is still significant
relative to other methodologies. Besides, AdaBoost had
better results in both metrics compared to Probability
Distribution. Therefore, the former provides the primary
means of judgment in the methods’ combination, and the
latter assists identification as described in the previous
section. Moreover, although multi-class AdaBoost has a
slight advantage over the binary classifiers’ combination, the

hybrid method yields the best performance as expected in
the listed methods. In summary, the proposed methodologies
achieve a strong classification ability when applied to the
flight phase identification problem.

Empirical ADS-B Dataset Validation
The hybrid method has also been applied to the empirical
ADS-B dataset to validate the feasibility of the trained model.
Thirty aircraft operated from April 07 to April 09, 2020, have
been randomly selected in the ADS-B dataset. Two examples
per day are shown in Figure 6. The model accomplished
satisfactory classification using synthetic flight data as a
training dataset. Additionally, Figure 7 gives an enlarged
display of the A64CAC aircraft’s partial trajectory circled by
red shown in Figure 6. The larger view explains why there
are some trajectories mixing two colors. This phenomenon
frequently occurs during the descending phase. When the
aircraft descends in steps, the model only marks the changing
neighbored points with a “descent” label, leaving other level
flight points with a “Cruise” label. These steps typically last
around one minute after descending 100ft. On the contrary,
the “Climb” phase has a more straightforward path compared
to the “Descent” phase.

Discussion
The results obtained by testing synthetic data verify the
universality of the proposed methods, thus indicating the
new framework to be a reliable and economical solution.
The application experiment in the empirical ADS-B exhibits
the generalization ability of the methodology. Its output may
have the potential for widespread application, such as an
accurate emission analysis for airports. As a result of the
pre-trained model, the program uses limited computational
resources in the identification process, and there is no
human intervention in the judgment procedure. On the
contrary, unsupervised machine learning methods such as k-
means and DBSCAN usually initially cluster data and then
execute identification steps (18). The performance of these
methods relies heavily on expert knowledge since concrete
identification logic rules are formulated manually. Parameters
for the logic may need to be adjusted accordingly for the
particular circumstances of each airport. As a result, these
methods are not as accurate and efficient as the proposed
model.

However, because both methods greatly depend on
precisely labeled data, the lack of real high-quality training
data may become a limitation of the proposed model
as a supervised learning method. On the other hand,
discontinuous or missing ADS-B signals, especially at low
altitude stages, may increase the difficulty of the phase
classification. This is because both methods require the
derived attributes, such as the change rate of altitude, as
inputs. Defective data may lead to more variation of the
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Figure 5. This is the flowchart of the hybrid methods. The flight phase duration is then summarized according to the phase code.

Table 2. Precision, Recall, and F-1 Score Report for Phases.

Hybrid Method AdaBoost (Multi-class)

Phase Precision Recall F1-score Phase Precision Recall F1-score

Taxi 0.99840 0.99989 0.99914 Taxi 0.99856 0.99982 0.99919
Takeoff 0.99977 0.99962 0.99969 Takeoff 0.96936 1.00000 0.98444
Climb 0.99540 0.97027 0.98267 Climb 0.99999 0.96426 0.98180
Cruise 0.98990 0.99848 0.99417 Cruise 0.98974 1.00000 0.99484
Descent 0.97651 0.98900 0.98272 Descent 0.97034 0.96982 0.97008
Approach 0.93693 0.86893 0.90165 Approach 0.83976 0.83854 0.83915

Adaboost (Binary Combination) Probability Distribution

Phase Precision Recall F1-score Phase Precision Recall F1-score

Taxi 0.99856 0.99987 0.99921 Taxi 0.88623 0.99858 0.93906
Takeoff 0.99985 0.99746 0.99865 Takeoff 0.98197 0.49431 0.65760
Climb 0.99539 0.96811 0.98156 Climb 0.98677 0.96807 0.97733
Cruise 0.98998 0.99101 0.99049 Cruise 0.98989 1.00000 0.99492
Descent 0.98221 0.98591 0.98406 Descent 0.98209 0.97668 0.97937
Approach 0.94947 0.84865 0.89623 Approach 0.87266 0.90032 0.88628

Table 3. Model Performance Comparison.

Index Method Accuracy1 SMAPE
1 Hybrid Method 98.83% (99.04%) 1.04% (0.77%)
2 AdaBoost (Multi-class) 98.40% (98.47%) 1.19% (1.15%)
3 AdaBoost (Binary Combination) 98.30% (98.87%) 1.21% (0.79%)
4 Probability Distribution 96.48% (96.68%) 2.03% (1.93%)
5 TICC + Fuzzy + Boolean2 91.99% 5.90%
6 K-means + Fuzzy + Boolean 81.79% 21.10%
7 DBSCAN + Fuzzy + Boolean 80.30% 22.63%
8 K-means + Boolean 52.78% 46.58%

1 Values in parentheses are the training set results.
2 “Fuzzy” stands for fuzzy logic, and “Boolean” stands for Boolean logic.
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Descent 
Approach

Taxi 
Take-off

Climb 
Cruise

Alt (ft)

LonLat

Alt (ft)

Lon
Lat

Alt (ft)

Lon
Lat

Alt (ft)

LonLat

Alt (ft)

Lon Lat

Alt (ft)

Lon
Lat

04/08 A64CAC04/07 ADF18A 04/09 AA9C7F

04/09 ADFEC904/07 A4020F 04/08 ADD0B1

Figure 6. ADS-B flight trajectory example classified by hybrid method model. All six examples are noted by the operation date and
hex identification code.

Altitude (ft)

Longitude Latitude

Cruise 
Descent

Figure 7. Partial enlarged ADS-B flight trajectory from aircraft
coded A64CAC on April 8, 2020.

trained model, thereby resulting in inaccurate predictions.
Including other auxiliary information such as TAS or power
settings or other diverse surveillance data sources may
alleviate issues due to missing ADS-B data, allowing the
achievement of more precise phase identification.

Conclusion and Future Work

Flight phase identification is an important yet challenging
task whose objective is to classify flight data into
different flight phases. The output estimates can provide
summary information for aircraft operations and contribute
to environmental impact evaluation as input. Efficiently
obtaining operational statistics is beneficial for nontowered
general aviation airports as well as for community action
groups seeking to reduce the perceived environmental impact
due to noise and exhaust. This research addresses the need
for more accurate emissions estimates by developing a
flight phase identification framework. In this study, two
methodologies are proposed and achieve higher accuracy
compared with other traditional methodologies. The hybrid
methods give even better results than the individual cases.
Additionally, the experiment presents results when the phase
identification framework is applied to an empirical ADS-B
dataset.

The methodology proposed in this article still has room for
improvement in terms of reliability and practicability. The
problem of noisy or missing ADS-B data at certain phases
may be resolved by collecting multiple data sources, such
as from the Garmin 1000 (G1000) system. These additional
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data would complement unknown information to provide
more robust training data. Furthermore, the current synthetic
flight data generator cannot simulate the various behavior of
different aircraft types. The problem may be tackled using
deep learning techniques. Specifically, construct a generative
adversarial network (GAN) (41) to self-learn the pattern of
diverse aircraft types, generating data closer to those in an
empirical dataset. It is also necessary to conduct a long-term
field case study to verify the method’s feasibility. Targeted
improvements can be made to address the deficiencies raised
by practitioners. Future work will also consist of developing
a real-time system that can monitor a dynamic operational
metric. Other possible applications utilizing this summarized
information, such as pollution statistics, shall be pursued.
Their development will allow managers and regulatory
agencies to better understand the environmental impacts and
provide improved support for decisions regarding airport
operations.
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