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Abstract

In this project, we apply Deep Reinforcement Learning to solve the Traveler
Salesman Problem and two TSP variants with constraints. Firstly, we identified
S2V-DQN as the state-of-the-art Deep RL algorithms that combines Graph Neural
Networks to solve the TSP, re-implemented it in PyTorch and achieved identical
results reported in the original paper. Secondly, we apply S2V-DQN to solve the
TSP with Time Windows and achieved comparable results with other operations
research tools. Thirdly, we test the performance of S2V-DQN on the TSP with
Pickup and Delivery, and the results are unsatisfying. We analyze the reason may
be that the brute-force masking scheme on the output layer is not enough for com-
plex constraints, which may need elaborate design to be intrinsically embedded
into the deep networks.

1 INTRODUCTION

Traveler Salesman Problem (TSP) is one of the most classic combinatorial optimization
problems and are studied in multiple fields. Since its first formulation, many solutions
have been proposed [Osaba et al., 2020]. The solving algorithms can be generally
classified into three approaches. The first one is the exact approach, which searches for
the entire solution space but is currently known to take beyond polynomial time [Karp,
1972, IBM, 2016]. The second approach is the heuristic apporach that applies various
approximation algorithms to reach a near-optimal solution [Aarts et al., 2003]. The
third approach is the learning approach, which applied machine learning to solve the
TSP. Recent advances in Deep Reinforcement Learning (RL) have stood out among
the learning approaches. In this project, we conduct an in-depth investigation into how
Deep Reinforcement Learning is applied to solve the TSP, and two variants of the TSP
with additional constraints: TSP with Time Windows (TSPTW) and TSP with Pickup
and Delivery (TSPPD).
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1.1 LITERATURE REVIEW

Utilizing Deep RL to solve the TSP has been an active field [Bello et al., 2017, Dai
et al., 2017, Deudon et al., 2018, Kool et al., 2019, Ma et al., 2020, da Costa et al.,
2020]. Bello et al., 2017 built their model from the Pointer Networks proposed by
Vinyals et al., 2015, in which a supervised learning recurrent neural network (RNN)
architecture was introduced to solve the TSP, regarding it as a sequence-to-sequence
transformation. Bello et al., 2017 adopted the Pointer Networks as the parametric
presentation of their Deep RL policy, and trained it following a similar way to the ad-
vantage actor-critic (A2C) algorithm [Mnih et al., 2016]. Kool et al., 2019 and Deudon
et al., 2018 extended the idea by embedding an attention mechanism, and solved the
model with the parametric version of the REINFORCE algorithm [Williams, 1992].
It has been the state-of-the-art on-policy RL algorithm for Vehicle Routing Problem.
For off-policy Deep RL algorithms, Dai et al., 2017, Ma et al., 2020, da Costa et al.,
2020 have introduced graph neural networks (GNN) to encode the TSP as a structure-
to-vector transformation and achieved better results. However, Bello et al., 2017, Dai
et al., 2017 and da Costa et al., 2020 only tested their performances on vanilla TSP,
while real-world problems may impose various constraints. In this project, we identify
the S2V-DQN [Dai et al., 2017] as the state-of-the-art off-policy approach that intro-
duced GNN to the TSP, and apply it to solve the TSP with Time Windows and TSP
with Pickup and Delivery.

1.2 BROAD IMPACT

The TSP problem is a common and practical problem that has a wide range of appli-
cations. For example, it enables the logistics distribution organization to get the best
driving route in the fastest time, and to achieve the purpose of fast distribution in this
manner. However, in practical applications, there will be various unique nuances and
constraints [Marques et al., 2019], and an increasing amount of data sets are also ob-
stacles to obtaining the best solution. Over the years, due to the great success of deep
learning in many fields, letting machines learn autonomously how to solve problems
is quite promising. It not only saves money and time, but may also generate a more
feasible solution than manual design [Cook, 2011].

2 PROBLEM FORMULATION OF THE TSP WITH

CONSTRAINTS

2.1 VANILLA TSP

Given N nodes {v1, v2, . . . , vN} ⊂ R2, the TSP is to find the optimal route that covers
the minimal distance to visit each coordinate exactly once [Lawler et al., 1986]. We
formalize the TSP as the following optimization problem [Ma et al., 2020]:

min
σ

L(σ, V ) =

N∑
i=1

||vσ(i) − vσ(i+1)||2 (1)
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V = {v1, v2, ..., vN}. σ represents the permutations of the coordinates. σ(1) = σ(N+
1), σ(i) ∈ 1, 2, ..., N , σ(i) 6= σ(j) for any i 6= j.

2.2 TSP WITH TIME WINDOWS

Baker presented the first mathematical model for symmetric TSP with Time Windows
(TSPTW) where total tour duration is minimized [Baker, 1983]. Here, symmetric
means for each edge has the same costs in both direction. Baker’s model stands as
the only formulation for simply minimizing completion time [Kara and Derya, 2015].
The model appears as follows:

min tn+1 − t0
s. t. ti − t0 ≥ t0i, i ∈ (1, 2, . . . , n)

|ti − tj | ≥ tij , i ∈ (2, 3, . . . , n), 1 ≤ j < i

tn+1 − ti ≥ ti0, i ∈ (1, 2, . . . , n)

ti ≥ ai, i ∈ (1, 2, . . . , n)

ti ≤ bi, i ∈ (1, 2, . . . , n)

ti ≥ 0, i ∈ (1, 2, . . . , n+ 1)

(2)

where tij is the travel time from node vi to node vj . ai is the earliest visit (service
begins) time of the node vi. bi is The latest visit time of the node vi. [ai, bi] is time
window of the node vi.

2.3 TSP WITH PICKUP AND DELIVERY

In general, there are four constraints in the symmetric TSP with Pickup and Delivery
Problem. First constraint is there is an connection between origin and destination nodes
{+0,−0} with a cost of c+0,−0 = 0. It is a convention so that every feasible route can
form a Hamiltonian circle. The second constraint require that each node is entered and
exited in all feasible routes, but by itself leaves open the possibility of disconnected
subtours [O’Neil and Hoffman, 2018]. The third constraint set the subtour elimination
requirement. The last constraint requires that every goods should be picked up before
dropped off, which is a primary difference compared to the regular TSP problem [Ru-
land and Rodin, 1997]. In summary the formulation is as follows:

min
∑

(i,j)∈E

cijxij

s. t. x+0,−0 = 1

x(δ(i)) = 2,∀i ∈ V
x(δ(S)) ≥ 2,∀S ⊂ V
x(δ(S)) ≥ 4,∀S ⊂ V, {+0,−i} ⊂ S, {−0,+i} ⊂ V \ S

(3)

where V is the union of V+ and V− with the addition of origin and destination nodes
{+0,−0}. xij ∈ {0, 1} is a binary decision variable for each e(i, j) ∈ E with the
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value xij = 1 if the edge e(i, j) is in a solution and 0 otherwise. δ(S) = {e(i, j) ∈
E|i ∈ S, j 6∈ S} is the cutset containing edges that connect S ⊂ V and S ⊂ V .

3 METHOD

3.1 REINFORCEMENT LEARNING FORMULATION FOR TSP

Reinforcement Learning operates through interacting with the environments and re-
ceiving rewards. It is formalized based on a Markov Decision Process which can be
defined by tuple (S,A, π, r, γ). S represents the state space and A denotes the action
space. π : S → P(A) defines the policy that the agent follows. Reward function
r : S → R is the reward from the environment and γ ∈ (0, 1) is a discount factor. In

the context of the vanilla TSP, the elements are represented in the following settings:

• State is defined as the set of previously visited nodes: si ∈ S, si = {vσ(i)}ik=1.

• Action is defined as the possible selections of the next node: ai ∈ A, ai =
vσ(i+1).

• Reward is defined as the negative cost of traveling from one node to another:
ri = −||vσ(i) − vσ(i−1)||2.

Figure 1: Model of S2V-DQN

3.2 S2V-DQN

S2V-DQN [Dai et al., 2017] proposes to embed the graphical input of the TSP to a
vector representation of each node with the help of the Structure2Vec [Dai et al., 2016]
network. It then train the network using the node vector embedding as input with the
classic Deep RL algorithm DQN [Mnih et al., 2015].
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3.2.1 STRUCTURE2VEC

Given a graph G = (V,E), the set of nodes V can be divided in to S and S, which
represent the set of visited nodes and the set of those not yet visited. The Structure2Vec
network initializes a p-dimensional vector representation µ(0)

vi for each node vi. The
embedding is updated leverageing three parts of information. The first is a state vector
that records weather a node has been visited. The second part is the sum of the node
vectors of the adjacent nodes. The third is the relu activated sum of the weights on
the connected edges of the node. The node vectors are updated for T times by the relu
activated sum of these three parts as follows:

µ(t+1)
vi ← relu

θ1xi + θ2
∑
j 6=i

µ(t)
vj + θ3

∑
j 6=i

relu (θ4w(i, j))

 , (4)

in which xi is a binary variable s.t. xi = 1 for Vi ∈ S and w(i, j) is the weight or cost
over the edge e(i, j). Then we get a graph with each node as a vector, embedding the
graphical information. The node vectors are summed up as the embedding of the entire
graph. The graph embedding is concatenated with each node embedding, to compute
the final output of the Q-value for each node:

Q (S, vi; Θ) = θ>5 relu

θ6 ∑
vj∈V

µ(T )
vj ; θ7µ

(T )
vi

 , (5)

in which [·; ·] represents concatenation, Θ = {θi}7i=1 and T is a hyper-parameter con-
trolling how many updates to learn the vector representation.

3.2.2 THE S2V-DQN ALGORITHM

DQN [Mnih et al., 2015] is a widely applied Deep Reinforcement Learning algorithm.
It parameterizes the Q function in Q-learning with a deep neural network and learns a
mapping between the input states and the Q-values of different actions. For S2V-DQN,
the Q-function is parameterized as the S2V network introduced in Section 3.2.1. The
ε-greedy mechanism is also applied, that is, to choose the optimal action with the max-
imum Q-value under probability (1 − ε) and take actions randomly under probability
ε. It is a strategy that’s commonly applied with DQN to encourage exploration. The
parameters of the Q-function is optimized by minimizing TD-error as the loss . The
complete learning process of S2V-DQN is shown in Algorithm 1.

3.2.3 ADAPTATION TO TSPTW AND TSPPD

Training Process for the TSPTW: For TSPTW, the training process basically follows
that in the vanilla TSP, with a few modifications regarding the time window constraints.
As introduced in Section 2, the visit time ti of each node has to fall in the time window
[ai, bi]. If the agent chooses to visit node vi and arrives at a time prior to ai, the agent
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Algorithm 1: S2V-DQN with ε Greedy
Result: Optimized Θ
Initialize Experience Replay Buffer
for episode = 1 to L do

Generate graph G;
Initialize the state S1 = ();
for step t = 1 to T do

vt =

{
random vi ∈ St w. p. ε

arg maxvi∈St
Q (St, vi; Θ) otherwise.

St+1 := (St, vt)
Add (St, vt, Rt, St+1) to replay buffer;
Sample random data batch from replay buffer;
Update Θ with SGD by optimizing
(γmaxv′ Q (St+1, v

′; Θ) + r (St, vt)−Q (St+1, vt; Θ))
2

end
end

has to wait for a period of ai − ti to enter and then leave node vi. Such waiting time
penalty is added to the reward for the TSPTW.

ri = −||vσ(i) − vσ(i−1)||2 + min{ti − ai, 0} (6)

And we regulate that a node vi cannot be visited when the time has already passed
bi. So it’s still quite possible that the agent will fail to traverse all the nodes. We’ll
introduce a training data generation mechanism that assigns reasonable time windows
to ensure there is definitely a feasible solution for the agent to learn. During the training
process, we would still mask out the nodes that violate the time window constraint and
directly discard such training instances.
S2V-DQN for the TSPPD: The key feature of the TSPPD is that the nodes come in
pairs with precedence relationships. That means the nodes for pickup and the nodes for
delivery come in pairs and the agent has to pickup before delivery. So in the training
for S2V-DQN, we pair the nodes by their pickup and delivery relationships, and at the
beginning, the nodes for delivery are masked out, leaving only the pickup ones optional,
until the corresponding node for pickup has been visited. The masking scheme is
illustrated in Figure 2.

4 EXPERIMENT

We firstly re-implement the S2V-DQN model in PyTorch and test it on vanilla TSP to
verify its effectiveness and the correctness of our code, then apply S2V-DQN to solve
the TSPTW and the TSPPD, which are problems not considered in the original papers.
We firstly introduce how the training data is generated in order to abide by the con-
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Figure 2: Masking Scheme of S2V-DQN for TSPPD.

straints, then explain the choice of baselines, and finally demonstrate the experimental
result and analysis.

4.1 TRAINING DATA GENERATION

For the vanilla TSP, we generate fully connected graphs with a graphical Python pack-
age called NetworkX [Hagberg et al., 2008] containing specified number of nodes, and
generate their coordinates from randomly from [0, 1]2. The weights of the edges are
then computed by the euclidean distance between the node coordinates.

For the TSPTW, apparently we need a time window [ai, bi] for each node vi in the
graph, such that ti ∈ [ai, bi]. If the time windows are generated randomly, it’s pos-
sible that there may not even be a feasible solution, i.e. we cannot traverse all nodes
within their time windows. The strategy here is to firstly ensure a feasible solution and
generate time windows w.r.t. the constraints. Based on the graph generated as those in
the vanilla TSP, we solve the vanilla TSP using a heuristic algorithm called 2-opt local
search [Aarts et al., 2003]. Then following the route, we compute the time of arrival for
each node based on previous nodes and sample a time window in the following way:
ai ∼ max {0,U(ti − 2, ti)} and bi ∼ U(ti, ti + 2). In the training process, we discard
the actions that would violate the constraints of time windows, and if a solution cannot
be found, it’s regarded as a training failure.

For the TSPPD, we randomly pair the nodes in the generated graph and build a dictio-
nary to record their corresponding pickup and delivery relationship. When choosing
the next node to visit, only the pickup node and the delivery node with corresponding
pickup node visited are optional.

4.2 BASELINES

We choose two baselines for this task. First, intelligent optimization algorithms are
widely applied to solve NP-hard problems, so we pick a classic one, the Ant Colony
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Figure 3: Convergence Curve of the Approximation Ratio of S2V-DQN on Vanilla TSP

Table 1: S2V-DQN Test Result of Vanilla TSP of Different Sizes

Number of Nodes
Approx Ratio

(Ours)
Approx Ratio

(Original) Test Running Time

20 2.01% 1.47% (15-20) 0.11s
50 6.13% 5.33% (40-50) 1.78s
100 8.84% 7.01% (50-100) 4.53s

Optimization [Colorni et al., 1992], as our baseline. Another useful tool called the OR-
tools [Google, 2016] recently developed by Google is popular in Operations Research,
so it is picked as our second baseline. For the ground truth solution, we apply CPLEX,
a state-of-the-art exact linear programming approach for solving combinatorial opti-
mization problems.

4.3 RESULT

4.3.1 RE-IMPLEMENTATION OF S2V-DQN ON THE VANILLA TSP

We firstly compare our PyTorch re-implementation of S2V-DQN to the C++ Cuda im-
plementation result reported in the original paper on the vanilla TSP to verify the effec-
tiveness of S2V-DQN and the correctness of our implementation. It is tested on graphs
with 20, 50 and 100 nodes respectively. We evaluate the result by the travel distance
approximation ratio of the S2V-DQN solution to the ground truth solution. We gener-
ate a separate validation dataset of size 100 for parameter tuning and a test set of size
100 to compute the average approximation ratio. The convergence curve is shown in
Figure 3 and the final results are shown in Table 1.
From the result, we see that the approximation ratio and the running time increase with
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the size of the graph, but the performance is basically identical to that reported in the
original paper. There is a slight gap between our result and the original percentage
because, as shown in the table, the results in the original paper are averaged among
different graph sizes, for example, 15 to 20 nodes, which will be lower than the result
for 20 nodes. Thus, in general, S2V-DQN is effective in solving the vanilla TSP and
our implementation in PyTorch is correct.

4.3.2 RESULT FOR THE TSPTW

We observe the travel cost, i.e. the length or travel time of the solutions given by
different algorithms for the TSPTW with 20 nodes and 50 nodes. The result is com-
puted by the average of 20 graphs in the TSPTW Benchmark Dataset [López-Ibáñez
and Blum, 2010]. Given the CPLEX solution as the ground truth, the result for S2V-
DQN, ACO and OR-Tools is demonstrated in Figure 4. From the result, we can see

Figure 4: Approximation Ratio on TSPTW 20 and TSPTW 50 for CPLEX, S2V-DQN,
ACO and OR-Tools.

that even though S2V-DQN is less optimal than the OR-Tools result, it’s reasonable to
say that S2V-DQN can learn a descent policy even after transferring from Vanilla TSP
to TSPTW, and it yields an obvious improvement comparing to traditional intelligent
algorithms like ACO. Thus, we can say that S2V-DQN is well applicable to the TSP
with some simple constraints like TSPTW.

4.3.3 RESULT FOR THE TSPPD

Grubhub sample instances have been collected as the test set for the TSPPD. This
dataset includes the problem instances of observed meal delivery requests and actual
travel time estimates, which are considered as pre-computed edge costs [Grubhub,
2018]. The result of applying S2V-DQN to the TSPPD is shown in Table 2. The
approximation ratio of S2V-DQN is many times larger than that of OR-Tools, showing
that S2V-DQN has failed to learn a comparable policy to exact or heuristic solvers.
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Our analysis is that we are only imposing masking scheme on the output layer of the
Deep Q-Network, which may not be enough for the agent to capture the pairing and
the precedence relations between nodes. A more desirable way would be embed such
pairing and precedence relations into the network architecture as a Deep RL model
that is specifically designed for the TSPPD task. In fact, as we are carrying our project,
progress has been made by other works in this regard. Li et al., 2021 have proposed
a Deep RL model based on an on-policy algorithm with the help of Attention mecha-
nisms. But nevertheless, S2V-DQN is of wider range applications and can be applied
to multiple combinatorial problems.

Table 2: S2V-DQN Test Result for TSPPD with 20 Nodes

Number of Nodes Approx Ratio

CPLEX 0%
S2V-DQN 61.88%
OR-Tools 3.52%

4.4 HYPER-PARAMETERS

We document the hyper-parameters of the S2V-DQN model for different tasks in Table
3

Table 3: Hyper Parameters for S2V-DQN

Task Learning Rate γ ε T p Batch Size Buffer Size

Vanilla TSP 20 0.01 0.97 0.2 3 64 64 10000
Vanilla TSP 50 0.005 0.99 0.5 4 64 128 10000

Vanilla TSP 100 0.005 0.99 0.5 4 64 128 10000
TSPTW 20 0.001 0.97 0.5 4 64 64 10000
TSPTW 50 0.001 0.99 0.5 4 64 128 10000
TSPPD 20 0.001 0.97 0.2 4 64 64 10000

5 CONCLUSION AND FUTURE WORK

In this project, we studied how to apply Deep Reinforcement Learning to solve the
Traveler Salesman Problem. Specifically, we identified S2V-DQN as the state-of-the-
art Deep RL algorithms that combines Graph Neural Networks to solve the problem,
re-implemented it in PyTorch and achieved identical results reported in the original
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paper. Moreover, we applied S2V-DQN to solve the TSP with simple constraints like
TSP with Time Windows and found it effective regarding problem of this kind. We also
explored the performance of S2V-DQN on the TSP with more complex constraints like
the TSP with Pickup and Delivery, and reported unsatisfying results. We analyzed that
the cause may be imposing the brute-force masking scheme on the output layer while
the problem itself may need elaborate design of the deep networks that can intrinsically
embed the constraints. This points out the future direction of this work and many other
on-going works are also good references [Li et al., 2021].

6 CONTRIBUTIONS

Site Bai implemented the code, conducted the experiments, and wrote major parts of
the final report. Qilei Zhang worked on the problem formulation of the TSPTW and
TSPPD, studied the broad impact of this work, collected the datasets, prepared slides
and presented the work. Works like discussion of the topics, literature review and study
of the method are completed together.
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