512 STAT Project Report

Group 11: Qilei Zhang, Keyi Zhu, Eric Zhu, Gabe Anderson November 30, 2020

1 Introduction

Many cities are now offering bike-sharing systems to improve the mobility and comfort of their residents. The system has been recently developed and provides people with the shared use of bicycles. The bicycle system offers users rentable bicycles from a docking station that can be ridden and returned at other docking stations. Bicycle sharing systems began in 1965 in Amsterdam, Netherlands and have been used worldwide since 2000 over the past twenty years (Shaheen, Guzman, & Zhang, 2010). It is important to make these rental bikes available and accessible to the public at the right times in order to lessen the downtime. Eventually, providing a city with a stable supply of rental bikes could become a major concern. Many countries have bike-sharing systems, such as Ddareungi, a South Korean bike-sharing system that started in 2015 (Seoul bike). With the great advances in transportation systems and information technology, the use of rental bikes is increasing day by day in Seoul. Therefore, there is a need to manage the supply of bicycles to accommodate the demand in order to provide continuous and convenient services to users.

In this project, we are proposing to perform statistical analysis on the data set "SeoulBikeData.csv" from https://archive.ics.uci.edu/ml/datasets/Seoul+Bike+Sharing+Demand. The data set we have used includes weather information (temperature, humidity, wind speed, visibility, dew point, solar radiation, snowfall, rainfall), the number of bicycles rented per hour, and date information. This paper will discuss the different kinds of usable models for the purpose of hourly rental bicycle demand forecasting.

2 Methods

2.1 Brief Description of the Data

The data used in the analysis contained a count of the number of bikes rented from several bike sharing stations across Seoul per hour over the course of a year. The data collected is not expressed as primary data and appears to be collected from statistics from the bike-share program as a whole, compiled into a single CSV file. Additionally, the average weather conditions were obtained from the Seoul Open Data Plaza as well as the season and whether each day was a holiday or not. The sample size is the number of hours data was taken which would be 24×365 or 8760 hours. A single sampling unit would simply be the obtained data over a single hour. The independent variable is a discrete value of the time. The response variables consist of the count of rented bicycles (number), temperature (Celsius), humidity (%), wind speed (m/s), visibility (10m), dew point temperature (Celsius), solar radiation (MJ/m^2) , rainfall (mm), snowfall (cm), season, and whether or not it was a functioning day. Of these variables, the bike count is the only discrete and the season and functional day are categorical. Otherwise most of the weather data are continuous. A summary of this data can be seen in Table 1 below.

Table 1: Data Variables and Description

Parameters	Abbreviation	Type	Measurement	
Date	date	date	Year-Month-Day	
Day	day	day	1,2,3,	
Month	month	month	1,2,3,	
Year	year	year	2017	
Number of total Rentals	count	integer	1,2,3,	
Hour	hour	number	0,1,2	
Temperature	temp	number	$^{\circ}\mathrm{C}$	
Daily Max Temperature	$\max t$	number	$^{\circ}\mathrm{C}$	
Daily Min Temperature	$\min t$	number	$^{\circ}\mathrm{C}$	
Humidity	humi	number	$^{\circ}\mathrm{C}$	
Wind speed	WS	number	m/s	
Visibility	vis	number	$10\mathrm{m}$	
Dew point temperature	$\mathrm{d}\mathrm{p}$	number	$^{\circ}\mathrm{C}$	
Solar Radiation	sr	number	MJ/m^2	
Rainfall	rf	number	mm	
Snowfall	sf	number	cm	
Seasons	season	Factor	"Autumn", "Spring",	
Holiday	holiday	Factor	"Holiday","No Holiday"	
Functioning Day	fd	Factor	"Yes","No"	
Weekday	fd	Factor	"Friday","Monday",	

2.1.1 Hour Influence

The first analysis performed was done to understand how the hour (hour of the day) influenced the count of bikes rented. The data set was divided into subsets based on which hour of the day a bike was checked out. These totals from the data set were represented as columns in Figure 4 in B.1. This graphic provided assurance that hour of the day would be an important factor to consider when performing our analysis. We therefore should include this factor in our models.

Note: See Figure 4 in B.1

2.1.2 Season Influence

Our second analysis was done to determine if season would be an important factor in our final analysis. Through the use of two separate visual aids, we hoped to determine how rental numbers varied during the year when viewed by months. Both Figures 2 and 7 were able to confirm that the season will be an important factor in the total bike rental amounts. Through the combined visualization of the graphs we were able to confirm that both season and month play important factors in determining the bike rental during the trial period. However, while in Figure 2 it can be seen that there was some amount of variation during each month, it appears that season was still a strong reason for those changes. In Figure 7 this belief was validated by observing how strongly the difference in demand was between winter and the other three seasons. However, with regards to the midsummer droop in demand shown in Figure 2, we could not entirely understand its cause. Based on this analysis alone we speculated that looking into temperature as a factor would better inform our decision.

Note: See Figure 2 and 7 in B.1

2.1.3 Weekday Influence

Our next analysis was geared towards determining if the distinction between weekday versus weekend would influence the demand experienced in the data set. While there does appear to be a clear lowest demand on Sundays in Figure 5, we did not find this to be a convincing enough explanation for the outliers shown in Figure 15. This prompted us to continue our search to identify some still existing problems with our data set.

Note: See Figure 5 and 15 in B.1

2.1.4 Outlier Check

In the search to identify where our outliers existed in the data set, a multi-box and whisker plot was generated where each vertical section in Figure 15 represents a different month's individual day's data. In months 5, 6, 7, 10, and 11 there are individual days where there are lower extreme outliers. As not all of these values are zero, there must be a combination of factors that have been explored that are causing the number of bikes rented on a given day to be a lower extreme outlier. These outliers only appeared after viewing the data when separated by month, which reinforced the idea that month will be a contributing factor in developing the model.

Note: See Figure 15 in B.1

In another effort to identify outliers, the data was sorted using temperature as the descriptive factor as shown in Figure 22. This clearly displayed that several of the outliers on the lower extreme are in fact zero. In reviewing the data this led to the understanding that another factor labeled "non-functioning days" was the cause for a subset of the outliers experienced in the previous data set viewings. Those handful of non-functioning days were then removed in Figure 23 where the same previous model was then repeated while excluding the clearly unhelpful data from non-functioning days.

Note: See Figure 22 and 23 in B.1

2.2 Preliminary Exploratory Analyses

We examined bar graphs and box and whisker plots to determine if the non numeric factors such as time, month, season, and day of the week influenced the number of bikes rented. From these plots we determined that hour of the day and season both played highly influential roles in modeling the demand. The results from the day of the week were less conclusive. A box and whisker plot was developed to show variance from day to day within a single month. From this model several outliers were determined in 5 of the months, as well as the variance for each month is not the same This did not disqualify month as a useful factor, but it was interpreted to mean that month alone is unable to model bike rental demand.

2.3 Correlation Matrix

2.3.1 Hourly Data

If we use the average number per hour to plot the covariance matrix in Figure 19, we find that the correlation between the variables is not particularly obvious. The time and temperature of the day are highly correlated with the number of rental bikes. Additionally, there is a strong positive correlation between dew point temperature and air temperature. The sign of each coefficient is also reasonably logical. For example, people are more willing to ride on a sunny day rather than a rainy day, so bike rental is positively correlated with solar radiation and negatively correlated with precipitation.

Note: See Figure 19 in B.1

2.3.2 Daily Data

After replacing the hourly measures with the average daily measures for weather and total rental bike numbers in Figure 20, we found that the correlation of the covariance matrix has improved significantly.

Note: See Figure 20 in B.1

2.3.3 Relationship Between Daily Rent and the Temperature

We especially explored the relationship between the average number of bikes rented per day and the temperature using a LOWESS smooth regression in Figure 22. The aforementioned outliers appear at the bottom of the scatter plot, so the smooth curve is not good enough with all the data. As before, the outliers were because the day was a non-function day, so the bicycle rental system did not work and the number was 0. After removing outliers in Figure 23, the smooth curve is more reasonable. The variables of the covariance matrix in Figure 25 have also improved to varying degrees.

Note: See Figure 22, 23, 25 in B.1

2.4 Model Building Process

We used an exhaustive list of all combinations of models where each combination of factors were used in order to best fit the bike demand. The models were then filtered by their R-squared values; any value below 75% was not included. Finally, we chose M18 as the representative model because the p-value of every coefficient was significant and the coefficient of determination was high (92%, which was second highest among all models). As an additional quality control test, the residual plot was observed in Figure 27 and appeared as a random normal distribution.

Note: See Figure 27c in B.1

2.5 Diagnostic Methods

Through the ANOVA test, the p-value and significance values were the best metrics to evaluate the importance of each factor to the model. The R-squared value was a way to measure the whole model. Only the top 10 performing models selected by their R-squared values were included in the more in depth review by ANOVA. We also test the curvature and normal assumption in Section 3.2.1. The outliers are corrected in Section 3.2.1 and Section 2.1.4.

2.6 Inferential Methods

In the comprehensive ANOVA, an F-test with a null hypothesis of "the factors chosen do not represent model the number of bikes rented at a given point" and an alternative of "the factors chosen do represent the number of bikes rented at a given point" was done. The p-values of each factor indicates the respective meaningfulness in the model and the R-squared showed the strength of the model as a whole. Using an alpha of .002 on a two way t-test meant that the p-value needed to be more extreme than .001 in either direction to register as meaningful.

3 Results

3.1 Summary of Findings

From the final model, we can conclude that the Seoul bike rental number in 2017 is related to the explanatory variables: temperature, wind speed, visibility, solar radiation, rainfall, and seasons.

As the temperature rises, the rental number increases. This is explained by the positive first-order term of temperature. But when the temperature is too high, the rental number will drop, as explained by the second-order and third-order of the variable. This corresponds to the observation we see before in Figure 2 Season wise monthly distribution and Figure 23 the scatter plot of the temperature.

For the other variables, as wind speed rises and it rains heavier, people are less likely to ride a bike. Contrary to this, when it is a sunny day and the visibility is high, people are more likely to rent a bike. Additionally, different seasons have different mean levels, which means different intercepts. Summer has the largest mean levels.

Table 2: Best-subsets Model Selection

Model	Weather Variable	Time Variable	R-squared	Adjusted R-squared	Data Set
Date	date	Male	Year-Month-Day		
M0	temp,maxt,mint,humi,ws,vis,dp,sr,rf,sf	season, holiday, month, day of the month, weekday	91.88%	90.28%	df_{day_f}
M2	temp,humi,ws,vis,dp,sr,rf,sf	=	76.38%	75.83%	df_{day_f}
M4	poly(temp,3),humi,ws,vis,sr,rf,sf	-	86.60%	86.25%	$df_{day_{f}}$
M8	poly(temp,3),ws,vis,sr,rf,if_snow	=	86.60%	86.29%	df_{day_f}
M12	poly(temp,3), ws, vis, sr, rf	month,season	91.90%	91.35%	$df_{day_{f}}$
M14	poly(temp,3),ws,vis,sr,rf	season,fd	89.93%	89.61%	df_day
M16	poly(temp,3),ws,vis,sr,rf	season,fd	91.28%	91.00%	df_day_no
M18	poly(temp,3),ws,vis,sr,rf	season,fd,holiday	92.08%	91.81%	df_day_no2
M20	poly(temp,3),ws,vis,sr,rf	month,fd,holiday	93.92%	93.56%	df_day_no2
M21	poly(temp,3), ws, vis, sr, poly(rf,2)	season,fd,holiday	92.44%	92.16%	df_day_no2

Note:

- 1. MX refers to Model X. X is the number of the model.
- 2. Variable abbreviations are described in Table 1.
- 3. df_day is the original data group by date and average or sum up the weather variables.
- 4. df_day_f means the data df_day without the function day variable.
- 5. df_day_no is data df_day without some first batch of outliers.
- 6. df_day_no2 is data df_day without some second batch of outliers.

3.2 Explanation of Table

3.2.1 Model Description in Detail

• M0

With all the variables in the model, the correlation coefficient is very high. But because when predictors are added to the model, R-squared will always increase even if the model does not actually improve. Because the correlation between variables is high, especially the factor variable of time can explain many changes in weather. The p-value of a large number of variables is low. So this is not a good model.

• M2

Model 2 includes all the weather factor variables, but it can be seen that the correlation coefficient has dropped significantly, and the p-value of each variable is not significant, so it is not a good model.

• M4

By observing the smooth curve of temperature and the number of rented bicycles, the relationship is guessed as a cubic curve. So set the temperature variable to polynomial form. However, the significance of humidity and snowfall is not high enough, so the model can be improved.

• M7

It is guessed that the precipitation and humidity have a certain degree of collinearity, so the humidity variable is removed, and an increase in the adjusted correlation coefficient is observed. Therefore, consider deleting the humidity variable. At the same time, from the results of ANOVA, it has also been confirmed.

Considering that there may be insufficient snowfall days and insufficient data, the amount of snowfall is transformed into a dummy variable, that is, whether it is snowing. Found that this variable is still not significant enough. By observing the VIF results, it is found that the collinearity problem in the model is not very serious, and all values are less than 6.

• M11

Add the interaction term of humidity and rainfall. The model does not improve a lot. The humidity is still not so significant. So, it is not a good choice.

• M12

Add the factor variable for months and seasons. Although the R-squared increases, the season term becomes N/A. It shows strong collinearity between variables. So, it is not a good model.

• M13

Add the factor variable for seasons. The model seems good. The R-squared increase significantly.

• M14

Add the dummy variable function day. By doing the F-test between Model 14 and Model 15, we conclude that variable function day is significant. So we decided to add this variable. Looking at the Normal Q-Q plot, we found that there were some outliers in the bottom of the plot. We guess the R-squared can be improved if getting rid of the outliers. By checking the outliers in detail, we found that the outliers are mostly caused by the great rainfall in summer. So the rental value will be abnormally lower than the mean level of summer. The other reason is because of the holiday.

• M16

By getting rid of outliers, the coefficient of determination improves. There are still some outliers shown in the residual plot. So continue to drop this data.

• M18

By adding the dummy variable holiday, the model improves again. By checking the ANOVA table of Model 17 and Model 18, we can know that this variable is significant.

• M20

From Model 12, we know that season and month have collinearity. They can both explain the rental number changes as time goes by. So, we substitute the seasons with months. We found that both R-squared and adjusted R-squared improve. However, by checking the generalized collinearity diagnostics table, we found that M20 has relatively large collinearity compared to Model 18.

• M21

Checking Model 18, we find that for rainfall variable, the residual of it is not constant. So, we use the polynomial form of rainfall. It works well. The coefficient of first and second term are both significant. At the same time, it solves the problem of non-constant variance in some extent to a certain extent. See the figure 29, the residual plot of every looks like null plot.

3.2.2 Anova Table M17 VS M18

Note: Only show last Anova. See other tables in B.2.

```
1 Analysis of Variance Table
 Model 1: count ~ poly(temp, 3) + ws + vis + sr + rf + season + fd
4 Model 2: count ~ poly(temp, 3) + ws + vis + sr + rf + season + fd + holiday
   Res. Df
                 RSS Df Sum of Sq
                                        \mathbf{F}
                                             Pr(>F)
      347 3078660706
6
 1
                      1 91581090 10.608 0.001237 **
      346 2987079616
                                                            0.05
9 Signif. codes: 0
                              0.001
                                              0.01
                                                                         0.1
```

3.2.3 Variance Inflation Factor

Note: Only show last Variance Inflation Factor table. See other tables in B.2.

```
1 # M18
                         GVIF Df GVIF(1/(2*Df))
2
  poly (temp, 3) 17.204031
                                         1.606713
                               3
                   1.346724
                               1
                                         1.160484
4 \text{ WS}
                   1.516114
                                         1.231306
5 vis
                              1
                   2.678679
                                         1.636667
6 S T
                              1
7 r f
                   1.532505
                              1
                                         1.237944
                  16.510510
                              3
                                         1.595732
8 season
9 fd
                   1.085814
                              1
                                         1.042024
  holiday
                   1.034305
                                         1.017008
                              1
10
11
12 # M20
                         GVIF Df GVIF(1/(2*Df))
13
  poly(temp, 3) 102.982818
                               3
                                          2.165014
14
15 WS
                    1.415424
                               1
                                          1.189716
16 vis
                    1.901942
                               1
                                          1.379109
                    3.026527
                                          1.739692
17 S T
                               1
                    1.616558
                               1
                                          1.271439
18
  r f
  month
                  152.308165 11
                                          1.256651
19
  fd
                    1.088535
                                1
                                          1.043329
20
21 holiday
                    1.048478
                                          1.023952
```

3.2.4 Parameter Estimates Table for Final Model

```
lm(formula = count ~ poly(temp, 3) + ws + vis + sr + rf + season +
       fd + holiday, data = df_day_no2)
  Residuals:
      Min
                1Q
                     Median
                                  3Q
                                          Max
  -8839.8
           -1930.7
                      179.2
                              1918.2
                                       8258.4
  Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
                                   1.408e+03
                                                -9.337
                                                        < 2e-16 ***
  (Intercept)
                      -1.314e+04
  poly (temp, 3)1
                       8.881e + 04
                                    7.142e+03
                                                12.435
                                                        < 2e-16 ***
  poly (temp, 3)2
                      -5.505e+04
                                    4.704e+03
                                               -11.702
                                                        < 2e-16 ***
  poly (temp, 3)3
                      -5.128e + 04
                                    3.215e+03
                                               -15.947
                                                        < 2e-16 ***
                      -7.908e+02
                                    3.004e+02
                                                -2.632
                                                       0.008862
14
  WS
  vis
                       1.368e+00
                                    3.876e - 01
                                                 3.530
                                                        0.000473
15
                       8.885e+03
                                    8.083e+02
                                                10.993
                                                        < 2e-16
  \mathrm{s}\,\mathrm{r}
16
                                                                 ***
                      -2.362e+02
                                    1.631e+01
                                               -14.485
                                                        < 2e-16
17
  r f
  seasonSpring
                      -4.780e+03
                                    5.085e+02
                                                -9.400
                                                        < 2e-16
  seasonSummer
                       1.374e + 03
                                    7.205e+02
                                                 1.906
                                                       0.057427
  seasonWinter
                       -3.469e+03
                                    7.624e+02
                                                -4.550
                                                       7.44e - 06 ***
  fdYes
                       2.553e+04
                                    9.376e+02
                                                27.227
                                                        < 2e-16 ***
  holidayNo Holiday
                       2.418e+03
                                    7.425e+02
                                                 3.257
                                                       0.001237 **
  Signif. codes:
                                 0.001
                                                  0.01
                                                                 0.05
                                                                               0.1
                                                                                             1
24
  Residual standard error: 2938 on 346 degrees of freedom
                                   Adjusted R-squared:
  Multiple R-squared:
                         0.9208,
_{28} F-statistic: 335.2 on 12 and 346 DF, p-value: < 2.2e-16
```

3.3 Conclusion

In summary, we decided to choose the M21 as the final model. The p-value of every coefficient is quite significant and the R squared is relatively high, which approaches 92%. At the same time, the collinearity in the model is not so high. By observing the residual plot and the standardized residual plot, the data points (see figure 30a and 30c) in the two figures are evenly distributed on both sides of y=0, showing a random distribution. Plus, the data points in the Normal Q-Q plot (see figure 30b) are arranged in a diagonal line, tending to a straight line, and are directly crossed by the diagonal, which intuitively conforms to the normal distribution. So, we conclude that this is a good model.

4 Discussion

The results suggest that temperature, wind speed, visibility, solar radiation, rainfall, and season are the explanatory variables that had impact on the Seoul bike rental number in 2017. With the given data, the number of bikes in operation can be adjusted on a regular basis to ensure that the demand is properly met. Additionally, bikes can be retracted from the bike stations during days with low expected rentals to prevent damage from weather or other possible costs such as theft. All in all, the knowledge on the demand for bike rentals is crucial to maintaining the most efficient number of distributed bikes to the public. Future research studies can focus on seasonal variation and regional forecasting of rental bicycle demand.

Though the model was carefully selected, there are still some limitations when we apply the model to the data set. The first one is due to the initial speculation about the snow variable. We theoretically assumed that people would not like to ride their bikes if it snowed. We first used snowfall, but found that the p-value of the model was very large, so we converted the snowfall to a dummy variable of whether or not it snowed on the day, which improved the model but not significantly enough to discard the variable. We speculate that the reason for this result is that the data sample is not large enough and the number of snow days is not enough. Another difficulty is that there are quite a few outliers in the summer data, because summer rain storms often cause a sudden and large drop in the number of rental cars, which reduces the accuracy of the model. For example, there are relationships between date, season, weather and temperature. Next time we can start by grouping the data together or picking some of the data to build a model to ensure the independence of the variables.

Compared with Sathishkumar and Yongyun's results (2020), we shared the similar value of R square. The best and highest R^2 value they got for their best model Gradient Boosting Machine is around 0.96 in the training set and 0.92 in the test set. And we calculated around 0.92 for R^2 in three models among all of the models as well. In addition, the model we chose M18 has the 0.92 for R^2 value in the test set. The results they concluded is that hour and temperature are the most influential variables in the Seoul Bike dataset, as they are ranked as the top five most influential variables in all of the predictive models developed. Their analyses showed the importance of the weather data variables, with temperature and hour being the most influential variables in forecasting demand for rental bike sharing. However, we didn't compare the importance of each variable, instead we researched the relationship between each individual variable and the data set.

5 References

- 1 Sathishkumar, E., Park, J., & Cho, Y. (2020, February 06). Using data mining techniques for bike sharing demand prediction in metropolitan city. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0140366419318997
- 2 Sathishkumar, E., Park, J., & Cho, Y. (2020, March). A rule-based model for Seoul Bike sharing demand. Retrieved from https://www.tandfonline.com/doi/pdf/10.1080/22797254.2020.1725789
- 3 Shaheen, S.A., Guzman, S., & Zhang, H. (2010). Bikesharing in Europe, the Americas, and Asia: Past, present, and future. *Transportation Research Record*, 2143(1), 159–167. doi:10.3141/2143-20

A Code

A.1 Import Required Library & Data Set

```
1 # Import Library
2 library (alr4)
3 library (purrr)
4 library (ggplot2)
5 library (corrplot)
6 library (dplyr)
7 # Read data
8 df = read.csv("SeoulBikeData.csv")
9 head (df)
10 # Show Data Structure
str(df)
  'data.frame': 8760 obs. of 14 variables:
                                   "01/12/2017" "01/12/2017" "01/12/2017" \dots
   $ Date
                           : chr
   $ Rented.Bike.Count
                                   254 204 173 107 78 100 181 460 930 490 ...
                           : int
                                  0 1 2 3 4 5 6 7 8 9 ...
   $ Hour
                           : int
   $ Temperature
                           : num
                                  -5.2 -5.5 -6 -6.2 -6 -6.4 -6.6 -7.4 -7.6 -6.5 ...
   $ Humidity
                                   37 \ 38 \ 39 \ 40 \ 36 \ 37 \ 35 \ 38 \ 37 \ 27 \ \dots
                           : int
   $ Wind.speed
                                   2.2 \ 0.8 \ 1 \ 0.9 \ 2.3 \ 1.5 \ 1.3 \ 0.9 \ 1.1 \ 0.5 \ \dots
                           : num
   $ Visibility
                           : int
                                   2000 2000 2000 2000 2000 2000 2000 2000 2000 1928 ...
   \$ Dew.point.temperature: num -17.6 -17.6 -17.6 -17.6 -18.6 -18.7 -19.5 -19.3 ...
9
   $ Solar . Radiation
                        : num 0 0 0 0 0 0 0 0 0.01 0.23 ...
   $ Rainfall
                           : num 0 0 0 0 0 0 0 0 0 0 ...
11
                           : num 0 0 0 0 0 0 0 0 0 0 ...
   $ Snowfall
12
                                   "Winter" "Winter" "Winter" ...
   $ Seasons
                           : chr
13
                                   "No Holiday" "No Holiday" "No Holiday" ...
   $ Holiday
                           : chr
                                   "Yes" "Yes" "Yes" "Yes" ...
  $ Functioning.Day
                         : chr
```

A.2 Date Transforming & Cleaning

```
# Detract Date
df$Date <- as.Date(df$Date, "%d/%m/%Y")
df$Day <- format(df$Date, "%d")
df$Month <- format(df$Date, "%m")
df$Year <- format(df$Date, "%Y")
df$Weekday <- weekdays(as.Date(df$Date))
# Checking Missing Values
missing_val<-data.frame(apply(df,2,function(x){sum(is.na(x))}))
names(missing_val)[1]='missing_val'
missing_val</pre>
```

A.3 Data Subsetting & Transforming & Aggregating

```
# Group Hour data into Daily Data
day_group <- group_by(df, Date)
df_day <- summarise(day_group,

count = sum(Rented.Bike.Count),
temp = mean(Temperature),
maxt = max(Temperature),
mint = min(Temperature),
humi = mean(Humidity),
ws = mean(Wind.speed),
vis = mean(Visibility),</pre>
```

```
dp = mean(Dew. point. temperature),
11
                       sr = mean(Solar.Radiation),
12
                       \mathbf{rf} = \mathbf{sum}(\mathbf{Rainfall}),
13
                       sf = sum(Snowfall),
14
                       season = max(Seasons),
                       holiday = max(Holiday),
                       fd = \max(Functioning.Day)
17
18
  # Transform Time Variable into Factors
  df$season <- as.factor(df$season)
  df$holiday <- as.factor(df$holiday)
  df$weekday<- as.factor(df$weekday)
  df$day <- as.factor(df$day)
  df$month <- as.factor(df$month)
  df$year <- as.factor(df$year)
  df$fd<- as.factor(df$fd)
  df_day$day <- format(df_day$Date, "%d")
  df_day$month <- format(df_day$Date, "%m")
  df_day$year <- format(df_day$Date, "%Y")</pre>
  df_day$weekday <- weekdays(as.Date(df_day$Date))
  df_day = subset(df_day, select = -c(Date))
  df_day$season <- as.factor(df_day$season)
  df_day$holiday<- as.factor(df_day$holiday)
  df_day$weekday<- as.factor(df_day$weekday)</pre>
  df_day$month<- as.factor(df_day$month)
36 df_day$day<- as.factor(df_day$day)
```

A.4 Preliminary Exploring

```
1 ## -
         - df
2 # Time Scatter Plot
3 plot (df$Date, df$Rented.Bike.Count,
       type = "p",
       main = "Total Bike Rentals Vs DateDay",
       xlab = "Year",
6
       ylab = "Total Bike Rentals",
       pch = 19
9 # Column plot for season wise monthly distribution of counts
10 ggplot (df, aes (x=Month, y=Rented. Bike. Count, fill=Seasons))+theme_bw()+geom_col()+
11 labs(x='Month',y='Total_Count',title='Season wise monthly distribution of counts')
12 # Column plot for Month wise weekdays' distribution of counts
ggplot (df, aes (x=Month, y=Rented. Bike. Count, fill=Weekday))+theme_bw()+geom_col()+
 labs (x='Month', y='Total_Count', title='Season wise monthly distribution of counts')
15 # Histogram in Hours
16 p1 <-
    df %>%
17
    group_by(Hour) %>%
18
    summarise (mcount = mean (Rented Bike Count)) %%
19
    ggplot(aes(x = Hour, y = mcount, fill = Hour)) +
20
      geom_bar(stat = 'identity') +
21
      guides (fill = 'none') +
      theme_minimal()
23
24 # Column plot for season wise monthly distribution of counts
  ggplot(df, aes(x=Weekday,y=Rented.Bike.Count))+theme_bw()+geom_col()+
 labs (x='Weekday', y='Total_Count', title='Season wise monthly distribution of counts')
27 # Violin plot for Yearly wise distribution of counts
 ggplot (df, aes (x=Month, y=Rented. Bike. Count, fill=Month))+geom_violin()+theme_bw()+
 labs(x='Month',y='Total_Count',title='Yearly wise distribution of counts')
30 # Rename the columns
```

```
31 names (df) <-c ('date', 'count', 'hour', 'temp', 'humi', 'ws', 'vis', 'dp', 'sr', 'rf', 'sf', '
     season', 'holiday', 'fd', 'day', 'month', 'year', 'weekday')
32
33 ##
         - df_day
34 # Violin plot for Yearly wise distribution of counts
  ggplot(df_day, aes(x=season, y=count, fill=season))+geom_violin()+theme_bw()+
labs (x='Season',y='Total_Count', title='Seasonly wise distribution of counts')
37 # Violin plot for Monthly wise distribution of counts
ggplot(df_day, aes(x=month,y=count, fill=month))+geom_violin()+theme_bw()+
39 labs(x='Month',y='Total_Count',title='Monthly wise distribution of counts')
40 # Violin plot for season wise distribution of counts
41 ggplot (df_day, aes (x=season, y=count, fill=month))+geom_violin()+theme_bw()+
42 labs (x='season', y='Total_Count', title='Monthly wise distribution of counts')
43 # Workingday wise distribution of counts
44 ggplot (df_day, aes (x=weekday, y=count, fill=season))+geom_col()+theme_bw()+
45 labs (x='workingday',y='Total_Count',title='Workingday wise distribution of counts')
46 # boxplot for total_count_outliers
par(mfrow=c(1, 1), pty="s")
48 boxplot (df_day$count, main='Total_count', sub=paste(boxplot.stats(df_day$count)$out))
49 # box plots for outliers
par (mfrow=c(2,2), pty="s")
51 # Box plot for temp outliers
52 boxplot (df$Temperature, main="Temp", sub=paste(boxplot.stats(df$Temperature)$out))
53 # Box plot for humidity outliers
boxplot (df$Humidity, main="Humidity", sub=paste(boxplot.stats(df$Humidity)$out))
55 # Box plot for windspeed outliers
  boxplot(df$Wind.speed, main="Windspeed", sub=paste(boxplot.stats(df$Wind.speed)$out))
  # Box plot for Total Bike Rentals in Season
  boxplot (df_day$count ~ df_day$season,
          data = df_day,
          main = "Total Bike Rentals Vs Season",
60
          xlab = "Season"
61
          ylab = "Total Bike Rentals")
  # Box plot for Total Bike Rentals in holiday
63
  boxplot (df_day$count ~ df_day$holiday,
          data = df_day,
65
          main = "Total Bike Rentals Vs Holiday/Working Day",
66
          xlab = "Holiday/Working Day",
67
          ylab = "Total Bike Rentals")
68
  # Box plot for Total Bike Rentals in month
  boxplot (df_day$count ~ df_day$month,
          data = df_day,
71
          main = "Total Bike Rentals Vs Month",
72
          xlab = "Month"
          ylab = "Total Bike Rentals")
74
^{75} # Histogram plot for Total Bike Rentals in month
  hist (df_day$count, breaks = 25,
       ylab = 'Frequency of Rental', xlab = 'Total Bike Rental Count',
       main = 'Distribution of Total Bike Rental Count')
79 # scatter plot for time variable
  pairs (subset (df, select=c ('count', 'hour', 'month', 'day', 'weekday', 'season', 'holiday', '
      fd ')))
81 # scatter plot for weather variable
s2 pairs (subset (df, select=c('count', 'temp', 'humi', 'ws', 'vis', 'dp', 'sr', 'rf', 'sf')))
83 # correlation matrix 1 (number)
  df_cor = cor(subset(df, select=c('count', 'hour', 'temp', 'humi', 'ws', 'vis', 'dp', 'sr', 'rf
      ', 'sf')))
85 # correlation matrix 1 (plot)
so corrplot (df_cor, method="number")
87 # correlation matrix 2 (number)
ss df_day_cor = cor(subset(df_day, select=c('count', 'temp', 'maxt', 'mint', 'humi', 'ws', 'vis
```

```
','dp','sr','rf','sf')))
 89 # correlation matrix 2 (plot)
 90 corrplot (df_day_cor, method="number")
 91 # LOWESS smoothing for df on temperature
 g_2 = g_2 
              xlab ("Temperature") + ylab ("Total Count")+ggtitle ("Total Count of Bikes used
              depending on Temperature")
 93 # LOWESS smoothing for df_day on temperature
 ggplot (df_day, aes(x = temp, y = count, colour = count)) + geom_point() + geom_smooth()
              +xlab("Temperature") + ylab ("Total Count")+ggtitle("Total Count of Bikes used
              depending on Temperature")
 96 # Get rid of the non-function day
     df_f = subset(df, fd = "Yes")
 df_day_f = subset(df_day, fd = "Yes")
 99 # Check LOWESS smoothing for df_day on temperature again
ggplot (df_day_f, aes(x = temp, y = count, colour = count))+geom_point()+geom_smooth
              ()+xlab("Temperature") + ylab ("Total Count")+ggtitle("Total Count of Bikes used
              depending on Temperature")
101 # Check LOWESS smoothing for df_day on humidity
ggplot (df_day_f, aes(x = humi, y = count, colour = count)) + geom_point() + geom_smooth
               ()+xlab("Humidity") + ylab ("Total Count")+ggtitle("Total Count of Bikes used
              depending on humidity")
103
104 # Check correlation matrix 3
      df_day_cor = cor(subset(df_day_f, select=c('count', 'temp', 'maxt', 'mint', 'humi', 'ws', '
              vis', 'dp', 'sr', 'rf', 'sf')))
      corrplot (df_day_cor, method="number")
108 # Scatterplot according to season groups
109 scatterplot(count ~ maxt | season, data=df_day_f, smooth=FALSE, ylab="Total_Day_Count"
```

A.5 Model Analyses

```
1 # --- Create Model -
   2
   з # m1
   _{4} \text{ m1} = \text{lm}(\text{data} = \text{df}_{-}\text{day})
   5 summary (m1)
   7 \text{ m2} = \lim(\text{count} \sim \text{temp} + \text{humi} + \text{ws} + \text{vis} + \text{dp} + \text{sr} + \text{rf} + \text{sf}, \frac{\text{data}}{\text{data}} = \frac{\text{df}_{\text{day}}}{\text{data}} = \frac{\text{df}_{\text{day}}}{\text{day}} = \frac{\text{df}_{\text{day}}}{\text
   8 summary (m2)
  9 # m3
df_day_f dev_dp = df_day_f temp - df_day_f dev_dp
_{11} m3 = \lim (count ^{\sim} temp + humi + ws + vis + \frac{\text{dev}}{\text{dp}} + sr + rf + sf, \frac{\text{data}}{\text{data}} = \frac{\text{df}}{\text{day}} - f)
12 summary (m3)
df_dav_f$dev_dp = df_dav_f$temp - df_dav_f$dp
_{14} m3 = \lim (count \sim temp + ws + vis + \frac{\text{dev}_{\text{d}}}{\text{dp}} + sr + rf + sf, \frac{\text{data}}{\text{data}} = \frac{\text{df}_{\text{day}}}{\text{data}} f)
15 summary (m3)
17 \text{ m} = \lim(\text{count } \text{ temp } + \text{ws } + \text{vis } + \text{humi } + \text{sr } + \text{rf } + \text{sf }, \text{ data } = \text{df } \text{day } \text{f})
18 summary (m3)
19 # m4
_{20} m4 = lm(count \sim poly(temp, 3) + ws + vis + humi + sr + rf + sf, data = <math>df_day_f
21 summary (m4)
22 # m5
\frac{df_day_f \$ if_snow}{df_day_f \$ if_snow} = (\frac{df_day_f \$ sf}{df_snow} > 0)
24 #df_day_f
```

```
_{25} m5 = lm(count \sim temp + ws + vis + humi + sr + rf + if_snow, data = df_day_f)
26 summary (m5)
27 # m6
28 m6 = lm(count \sim poly(temp, 3) + poly(ws, 2) + vis + humi + sr + rf + sf, data = df
              day_f)
29 summary (m6)
30 # m7
31 m7 = \lim (\text{count} \sim \text{poly}(\text{temp}, 3) + \text{ws} + \text{vis} + \text{sr} + \text{rf} + \text{sf}, \text{data} = \text{df}_{\text{day}}_{\text{f}})
32 summary (m7)
33 # m8
34 m8 = \lim (count \sim poly(temp, 3) + ws + vis + sr + rf + if_snow, data = \inf_{a} day_f)
35 summary (m8)
36 vif(m8) #collinearity drop humi
37 # m9
38 m9 = \lim(\text{count } \sim \text{poly}(\text{temp}, 3) + \text{ws} + \text{vis} + \text{sr} + \text{rf}, \text{data} = \text{df}_{\text{day}}_{\text{f}})
39 summary (m9)
40 # m10
_{41} m10 = \lim(count ^{\sim} poly(temp, 3) + ws + vis + humi + sr, data = \frac{df}{day}f
42 summary (m10)
43 # m11
44 m11 = \lim(\text{count} \sim \text{poly}(\text{temp}, 3) + \text{ws} + \text{vis} + \text{humi*rf} + \text{sr}, \text{data} = \text{df}_{\text{day}}_{\text{f}})
45 summary (m11)
46 # m0
47 \text{ m0} = \lim(\text{count} \sim \text{temp} + \text{maxt} + \text{mint} + \text{humi} + \text{ws} + \text{vis} + \text{dp} + \text{sr} + \text{rf} + \text{sf} + \text{season} + \text{mint} 
              holiday + day + month + weekday, data = df_day_f)
48 summary (m0)
49
50 # m12
_{51} m12 = lm(count \sim poly(temp, 3) + ws + vis + sr + rf + month + season, data = <math>df_day_d
              f )
summary (m12)
53 # m13
m13 = lm(count \sim poly(temp, 3) + ws + vis
                                                                                                                        + sr + rf + season, data = df_day_f)
55 summary (m13)
56 # m14
_{57} m14 = lm(count \sim poly(temp, 3) + ws + vis + sr + rf + season + fd, <math>data = df_day)
58 summary (m14)
59 # m15
60 m15 = \lim(\text{count} \sim \text{poly}(\text{temp}, 3) + \text{ws} + \text{vis} + \text{sr} + \text{rf} + \text{season}, \text{data} = \text{df}_{-}\text{day})
summary (m15)
62 # m16 outliers
df_day_no = df_day[-c(221,298,267),]
_{64} m16 = lm(count \sim poly(temp, 3) + ws + vis + sr + rf + season + fd, <math>data = df_day_no)
65 summary (m16)
66 # m17 outliers
df_day_no2 = df_day_no[-c(306,267,341),]
68 m17 = \lim (count \tilde{} poly(temp, 3) + ws + vis + sr + rf + season + fd, data = df_day_no2
              )
69 summary (m17)
70 # m18
_{71} m18 = \lim(count \tilde{} poly(temp, 3) + ws + vis + sr + rf + season + fd + holiday, data =
              \frac{df}{day} no2)
72 summary (m18)
73 vif (m18)
74
m19 = lm(count \sim poly(temp, 3) + ws + vis + sr + rf + season + month + fd + holiday,
                data = df_day_no2
77 summary (m19)
78 # m20
_{79} m20 = \lim(count _{10} poly(temp, 3) + ws + vis + sr + rf + month + fd + holiday, data =
```

```
df_day_no2)
summary (m20)
   vif(m20)
81
82
84 # Test for curvature in M18
85 residualPlots (m18)
86 #m21
87 m21 = \lim(\text{count} \sim \text{poly}(\text{temp}, 3) + \text{ws} + \text{vis} + \frac{\text{poly}(\text{rf}, 2)}{\text{rf}} + \text{season} + \text{fd} + \text{holiday},
        data = df_day_no2
   summary (m21)
   # Test for curvature in M21
   residualPlots (m21)
          ANOVA
92
93 anova (m4, m7)
94 anova (m10)
anova (m0, m2, m3, m4, m5, m6, m7, m8, m9, m10)
   anova (m15, m14)
   anova (m17, m18)
   anova (m18)
   anova (m20)
99
100
        — Model Plot
   plot (m9, col = "gold")
   plot(m14, col = "red")
   plot(m16, col = "red")
   plot(m17, col = "red")
   plot(m18, col = "red")
```

B Output

B.1 Preliminary Exploring Figure

Note: Refer to code in A.4

Figure 1: Total Bike Rentals Vs DateDay

Figure 2: Season wise monthly distribution of counts

Figure 3: Weekday wise monthly distribution of counts

Figure 4: Hourly wise distribution of counts

Figure 5: Weekly wise monthly distribution of counts

Figure 6: Monthly wise distribution of counts

Figure 7: Seasonly wise distribution of counts

Figure 8: Monthly wise distribution of counts

Figure 9: monthly wise distribution of counts in season groups

Figure 10: Workingday wise distribution of counts

Figure 11: Box plot for total count Outliers

Figure 12: Box plots for outliers

Figure 13: Box plots in seasons

Figure 14: Box plots in Holiday and Working day

Figure 15: Box plots in Month

Pistribution of Total Bike Rental Count Leading Total Bike Rental Count Leading Total Bike Rental Count Total Bike Rental Count

Figure 16: Distribution of Total Bike Rental Count

Figure 17: Scatter plot of time variables

Figure 18: Scatter plot of weather variables

Figure 19: Correlation matrix in df

Figure 20: Correlation matrix in df_day

Figure 21: LOWESS smoothing for df on temperature

Figure 22: LOWESS smoothing for df_day on temperature

Figure 23: LOWESS smoothing for df_day on temperature without outliers

Figure 24: LOWESS smoothing for df_day on humidity

Figure 25: Correlation matrix in df_day_f

Figure 26: Scatterplot according to season groups

B.2 Model Analyses

Note: Refer to code in A.4

```
Call:
  lm(data = df_day)
  Residuals:
                 1Q
       Min
                      Median
                                    3Q
                                            Max
  -9774.2 -1551.6
                        98.8
                               1631.2
                                         9377.7
  Coefficients: (4 not defined because of singularities)
                          Estimate Std. Error t value Pr(>|t|)
  (Intercept)
                          560.4005
                                     7995.3760
                                                   0.070 \ 0.944168
11 temp
                         -279.3469
                                      463.2173
                                                  -0.603 \ 0.546918
12 maxt
                           64.0348
                                      236.3761
                                                   0.271 \ 0.786649
13 mint
                           -3.6977
                                      230.3434
                                                  -0.016 0.987203
14 humi
                        -161.8012
                                       87.3164
                                                  -1.853\ 0.064842
                         -675.0650
                                      387.2542
                                                  -1.743 \ 0.082305
  ws
15
                            0.5603
                                         0.6383
                                                   0.878 \ 0.380749
  vis
16
17
  dp
                          619.9961
                                      316.5430
                                                   1.959
                                                          0.051065
18
  sr
                        9918.6557
                                     1354.6396
                                                   7.322
                                                          2.19e - 12
19 rf
                        -173.2858
                                       19.6591
                                                  -8.815
                                                          < 2e-16 ***
_{20} sf
                          -37.2289
                                       22.2050
                                                  -1.677 \ 0.094645
21 seasonSpring
                        -968.7810
                                     1118.4229
                                                  -0.866 0.387060
22 seasonSummer
                       -7290.2118
                                     1650.0746
                                                  -4.418 \ 1.38e - 05 ***
23 seasonWinter
                       -7744.4170
                                     1032.7896
                                                  -7.499 \quad 7.08e - 13 \quad ***
  holidayNo Holiday
                        3179.1328
                                      831.9605
                                                   3.821
                                                          0.000161 ***
  fdYes
                       23836.8104
                                     1006.3193
                                                  23.687
                                                           < 2e-16 ***
  day02
                       -2080.5274
                                     1317.0049
                                                  -1.580 \ 0.115203
26
27 day03
                           -7.0002
                                     1312.1109
                                                  -0.005 0.995747
28 day04
                         -308.7832
                                     1314.7967
                                                  -0.235 0.814481
  day05
                       -1148.1306
                                     1313.4513
                                                  -0.874 0.382734
  day06
                         536.4916
                                     1314.2137
                                                   0.408 \ \ 0.683397
  day07
                         276.0304
                                     1311.0569
                                                   0.211 \ 0.833387
  day08
                         -250.5134
                                     1305.3236
                                                  -0.192\ 0.847935
  day09
                         -356.9926
                                     1319.9966
                                                  -0.270 \ 0.786997
34 day10
                         182.0756
                                     1316.3804
                                                   0.138 \ 0.890082
35 day11
                         151.7187
                                     1322.4522
                                                   0.115 \ 0.908738
36 day12
                                     1311.2926
                         -199.4999
                                                  -0.152 \ 0.879177
37 day13
                        2176.8557
                                     1322.7517
                                                   1.646 \ 0.100855
38 dav14
                         371.8701
                                     1325.8978
                                                   0.280 \ 0.779310
39 day15
                                     1292.0555
                                                  -0.380 \ 0.704578
                        -490.3389
  day16
                       -1475.1205
                                     1299.0991
                                                  -1.135 \ 0.257059
  day17
                         352.9294
                                     1311.1311
                                                   0.269
                                                          0.787974
42 day18
                       -1090.5040
                                     1322.6945
                                                  -0.824 \ 0.410325
43 day19
                                     1315.3726
                                                  -0.029 \ 0.977110
                          -37.7716
44 day20
                           36.9467
                                     1324.2208
                                                   0.028 \ \ 0.977760
45 day21
                        -199.3329
                                     1319.9247
                                                  -0.151 0.880061
46 day 22
                       -1718.8409
                                     1292.3733
                                                  -1.330 0.184516
47 day23
                        -539.0738
                                     1316.3552
                                                  -0.410\ 0.682446
48 day24
                                                  -0.568 \ 0.570161
                         -744.3515
                                     1309.4866
49 day25
                         398.7907
                                     1309.0069
                                                   0.305 \ 0.760839
50 day 26
                         -945.3908
                                     1328.2715
                                                  -0.712 \ 0.477167
51 day27
                         437.7280
                                     1334.0384
                                                   0.328 \ \ 0.743044
52 day 28
                         327.3772
                                     1328.2944
                                                   0.246 \ \ 0.805489
53 day 29
                            0.7764
                                     1342.3664
                                                   0.001 \ 0.999539
54 day30
                         -393.7920
                                     1347.1964
                                                  -0.292 \ 0.770252
55 day31
                          203.4960
                                     1533.1189
                                                   0.133 \ 0.894492
```

```
-2.404 \ 0.016796 *
56 month 02
                       -2109.2001
                                     877.2296
57 month 03
                       -6889.2981
                                    1034.4201
                                                 -6.660 \, 1.28 \, \mathrm{e}{-10} \, ***
58 month 04
                       -3042.7076
                                     911.7212
                                                 -3.337 \ 0.000951 \ ***
59 month 05
                               NA
                                            NA
                                                     NA
                                                               NA
60 month 06
                        9747.1319
                                     975.9795
                                                  9.987
                                                         < 2e-16 ***
61 month 07
                        2266.4761
                                     828.5709
                                                  2.735 0.006595 **
62 month 08
                                            NA
                               NA
                                                     NA
63 month 09
                        -142.9319
                                    1338.7252
                                                 -0.107 0.915044
64 month 10
                        1746.1143
                                     974.6630
                                                  1.792 \ 0.074203
65 month11
                               NA
                                            NA
                                                     NA
                                                               NA
66 month12
                        1507.5287
                                     832.0377
                                                  1.812 \ 0.070993
67 year 2018
                               NA
                                            NA
                                                     NA
                                                               NA
68 weekdayMonday
                        -881.8642
                                     624.4456
                                                 -1.412 \ 0.158900
69 weekdaySaturday
                       -2118.0267
                                     624.2942
                                                 -3.393 \ 0.000784
70 weekdaySunday
                       -3004.7974
                                     628.8002
                                                 -4.779 \ 2.75e-06 ***
71 weekdayThursday
                        -401.6297
                                     624.9292
                                                 -0.643 0.520914
72 weekdayTuesday
                        -179.7183
                                     630.8047
                                                 -0.285 \ 0.775912
73 weekdayWednesday
                        -271.7089
                                     632.6285
                                                 -0.429 \ 0.667868
74
  Signif. codes:
                          ***
                                  0.001
                                                   0.01
                                                                  0.05
                                                                                 0.1
       1
76
77 Residual standard error: 3134 on 305 degrees of freedom
Multiple R-squared: 0.9218, Adjusted R-squared: 0.9067
_{79} F-statistic: 60.94 on 59 and 305 DF, p-value: < 2.2e-16
```

```
1 Call:
_{2} lm(formula = count ~ temp + humi + ws + vis + dp + sr + rf +
      sf, data = df_day_f
  Residuals:
                  1Q
                       Median
                                      3Q
       Min
                                              Max
            -3236.6
  -14520.9
                        -191.8
                                 3884.7
                                         11908.2
  Coefficients:
                Estimate Std. Error t value Pr(>|t|)
  (Intercept) 15937.000
                          10589.549
                                        1.505
                                                0.1332
12 temp
                 -51.279
                             407.790
                                       -0.126
                                                0.9000
13 humi
                 -81.738
                             119.775
                                       -0.682
                                                0.4954
               -1996.725
                             484.769
                                      -4.119 4.77e-05 ***
14 WS
                                      1.853
                                                0.0648
15 V is
                   1.315
                               0.710
                 498.380
                             431.948
                                       1.154
                                                0.2494
16 dp
               12748.681
                            1416.858
                                        8.998
                                               < 2e-16 ***
17 ST
18 rf
                -166.270
                              28.280
                                       -5.879
                                              9.75e - 09 ***
19 sf
                 -42.872
                              31.661
                                       -1.354
                                                0.1766
20
                                0.001
                                                0.01
                                                               0.05
                                                                             0.1
21 Signif. codes:
                   0
                         ***
      1
23 Residual standard error: 4885 on 344 degrees of freedom
Multiple R-squared: 0.7638, Adjusted R-squared:
_{25} F-statistic: 139.1 on 8 and 344 DF, p-value: < 2.2e-16
```

```
Call:
 lm(formula = count ~~temp + ws + vis + dev_dp + sr + rf + sf, \\ data = df_day_f)
```

```
5 Residuals:
       Min
                  1Q
                        Median
                                       3Q
                                               Max
  -14548.6
            -3261.0
                        -281.1
                                  3858.2
                                           12010.9
  Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                             1281.232
                                         6.840 \ 3.62e{-11} ***
  (Intercept)
                8763.508
11
                 424.480
                               37.589
                                        11.293
                                                < 2e-16 ***
12 temp
               -2003.575
                              484.290
                                        -4.137 4.42e-05 ***
13 WS
14 vis
                    1.486
                                0.664
                                         2.238
                                                  0.0259 *
                 -214.986
                              118.776
                                        -1.810
                                                  0.0712 .
15 dev_dp
               12763.911
                             1415.585
                                         9.017
                                                < 2e-16 ***
16 S T
                               25.967
                 -173.883
                                        -6.696 8.69e-11 ***
17 rf
18 Sf
                  -46.012
                               31.301
                                        -1.470
                                                  0.1425
20 Signif. codes:
                                 0.001
                                                  0.01
                                                                0.05
                                                                               0.1
                   0
                         ***
      1
22 Residual standard error: 4881 on 345 degrees of freedom
Multiple R-squared: 0.7635, Adjusted R-squared:
_{24} F-statistic: 159.1 on 7 and 345 DF, p-value: < 2.2\,\mathrm{e}{-16}
```

```
1 Call:
2 lm(formula = count ~ poly(temp, 3) + ws + vis + humi + sr + rf +
      sf, data = df_day_f
5 Residuals:
       Min
                 1Q
                       Median
                                     3Q
                                             Max
  -16079.2
           -1982.8
                         -8.1
                                 2595.0
                                          8796.8
9 Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   1.424e+04
                              2.265e+03
                                           6.290 \ 9.70e-10 ***
12 poly (temp, 3)1
                 1.202e+05
                              7.291e+03
                                         16.492 < 2e-16 ***
poly (temp, 3)2 -4.143e+04
                              4.096e+03 -10.114
                                                 < 2e-16 ***
poly (temp, 3)3 -4.920e+04
                                         -12.695 < 2e-16 ***
                              3.875e+03
                              3.736e+02
                                          -3.962 9.05e-05 ***
15 WS
                  -1.480e+03
16 Vis
                   2.026e+00
                              5.421e-01
                                           3.738 0.000217 ***
17 humi
                  -1.126e+01
                              2.516e+01
                                          -0.448 \ 0.654717
                   7.744e+03
                              1.100e+03
                                          7.038 \ 1.07e-11 ***
18 ST
                  -2.385e+02
                              2.060e+01 -11.578 < 2e-16 ***
19 rf
                   1.037e+01
                              2.414e+01
                                           0.430 \ 0.667812
22 Signif. codes:
                   0
                                0.001
                                               0.01
                                                             0.05
                                                                           0.1
      1
24 Residual standard error: 3684 on 343 degrees of freedom
Multiple R-squared: 0.866, Adjusted R-squared: 0.8625
_{26} F-statistic: 246.4 on 9 and 343 DF, p-value: < 2.2e-16
```

```
9 Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                                                   0.1148
11 (Intercept) 4161.8084
                             2632.7402
                                          1.581
                                          9.507 < 2e-16 ***
                 412.1929
                               43.3555
12 temp
               -1961.7656
                                         -4.048 6.37e-05 ***
13 WS
                              484.5838
14 vis
                    1.4906
                                          2.144
                                                   0.0327 *
                                0.6953
15 humi
                   51.1729
                               32.9598
                                          1.553
                                                   0.1214
               12516.5870
                             1405.8077
                                          8.903
                                                 < 2e-16 ***
16 ST
                 -177.5716
                               26.8065
                                         -6.624 \quad 1.34 \,\mathrm{e}{-10} \quad ***
18 if_snowTRUE -1639.3122
                            1090.3960
                                         -1.503
                                                  0.1336
20 Signif. codes:
                    0
                                 0.001
                                                  0.01
                                                                 0.05
                                                                               0.1
      1
21
22 Residual standard error: 4887 on 345 degrees of freedom
Multiple R-squared: 0.763, Adjusted R-squared: 0.7582
_{24} F-statistic: 158.6 on 7 and 345 DF, p-value: < 2.2e-16
```

```
2 lm(formula = count ~ poly(temp, 3) + poly(ws, 2) + vis + humi +
      sr + rf + sf, data = df_day_f
5 Residuals:
              1Q Median
                             3Q
     Min
                                   Max
  -16207
         -1952
                    -53
                           2526
                                  8814
9 Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
11 (Intercept)
                   1.172e+04
                               2.322e+03
                                            5.048 \quad 7.29e-07 \quad ***
poly (temp, 3)1
                   1.210e+05
                               7.332e+03
                                           16.497
                                                  < 2e-16 ***
poly (temp, 3)2 -4.175e+04
                               4.111e+03 -10.155 < 2e-16 ***
poly (\text{temp}, 3)3 -4.905e+04
                               3.880e+03 -12.642 < 2e-16 ***
15 poly (ws, 2)1
                  -1.640e+04
                               4.195e+03
                                          -3.911 \ 0.000111 \ ***
16 poly (ws, 2)2
                   3.587e + 03
                               3.838e+03
                                          0.935 \ 0.350615
                               5.426e-01
                                          3.702 0.000250 ***
17 vis
                   2.008e+00
18 humi
                   -1.208e+01
                               2.518e+01
                                           -0.480 0.631746
19 S T
                   7.816e+03
                               1.103e+03
                                           7.084 \ 8.01e-12 ***
20 rf
                  -2.392e+02
                               2.062e+01 -11.604 < 2e-16 ***
                                           0.470 \ 0.638502
_{21} sf
                   1.136e+01
                               2.417e+01
23 Signif. codes:
                                0.001
                                                0.01
                                                              0.05
                                                                            0.1
      1
Residual standard error: 3685 on 342 degrees of freedom
Multiple R-squared: 0.8664, Adjusted R-squared: 0.8625
_{\rm 27} F-statistic: 221.8 on 10 and 342 DF, p-value: < 2.2\,e-16
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   1.332e+04
                               9.107e+02 14.623 < 2e-16 ***
12 poly (temp, 3)1
                  1.181e+05
                                5.391e+03
                                           21.898
                                                    < 2e-16 ***
poly (temp, 3)2 -4.123e+04
                               4.069e+03 -10.135 < 2e-16 ***
                                3.847e + 03 - 12.738 < 2e - 16 ***
poly (temp, 3)3 -4.901e+04
                                           -4.087 5.45e-05 ***
15 WS
                   -1.506e+03
                                3.686e+02
                                4.574e - 01
                                             4.714 \ \ 3.53e-06 \ ***
16 Vis
                    2.156e+00
                    8.000e+03
                                9.389e+02
                                             8.520 \ 5.06e-16 ***
17 S T
18 rf
                   -2.411e+02
                                1.975e+01
                                           -12.205
                                                    < 2e-16 ***
19 sf
                    8.225\,\mathrm{e}{+00}
                                2.363e+01
                                             0.348
                                                       0.728
21 Signif. codes:
                                 0.001
                                                 0.01
                                                                0.05
                                                                              0.1
      1
23 Residual standard error: 3680 on 344 degrees of freedom
Multiple R-squared: 0.866, Adjusted R-squared:
_{25} F-statistic: 277.8 on 8 and 344 DF, p-value: < 2.2\,\mathrm{e}{-16}
```

• anova(m4,m7)

```
Analysis of Variance Table

Model 1: count ~ poly(temp, 3) + ws + vis + humi + sr + rf + sf

Model 2: count ~ poly(temp, 3) + ws + vis + sr + rf + sf

Res.Df RSS Df Sum of Sq F Pr(>F)

1 343 4656024088

2 344 4658743796 -1 -2719708 0.2004 0.6547
```

• M8

```
1 \text{ m8} = \text{lm}(\text{count } \text{ } \text{poly}(\text{temp}, 3) + \text{ws} + \text{vis} + \text{sr} + \text{rf} + \text{if\_snow}, \text{ data} = \text{df\_day\_f})
2 \text{ summary}(\text{m8})
```

• vif(m8)

```
GVIF Df GVIF(1/(2*Df))
2 poly (temp, 3) 3.065137
                                       1.205244
                 1.261411
                            1
                                       1.123126
4 vis
                 1.331896
                            1
                                       1.154078
                 2.297687
                                       1.515812
5 S T
                             1
6 r f
                 1.464960
                                       1.210355
7 if_snow
                 1.326321
                                       1.151660
```

```
2 lm(formula = count ~ poly(temp, 3) + ws + vis + sr + rf, data = df_day_f)
4 Residuals:
       Min
                  1Q
                       Median
                                     3Q
                                             Max
  -16169.1
             -2028.7
                        -19.1
                                 2579.3
                                          8792.1
  Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
10 (Intercept)
                   1.338e+04
                              8.922e+02
                                          14.995
                                                  < 2e-16 ***
                   1.177e + 05
11 poly (temp, 3)1
                              5.311e+03
                                          22.170
                                                  < 2e-16 ***
                                                  < 2e-16 ***
poly (\text{temp}, 3)2 -4.102e+04
                              4.016e+03 -10.213
                              3.841e+03 -12.750 < 2e-16 ***
poly (temp, 3)3 -4.897e+04
14 WS
                  -1.511e+03 3.680e+02 -4.106 5.04e-05 ***
```

```
2.137e+00 4.535e-01
                                         4.713 \ 3.55e-06 ***
15 Vis
                   7.981e+03
                                           8.525 \ 4.84e{-16} ***
                              9.362e+02
16 S T
                              1.972e+01 -12.234 < 2e-16 ***
17 rf
                  -2.413e+02
19 Signif. codes:
                                0.001
                                               0.01
                                                             0.05
                                                                           0.1
                   0
                        ***
      1
20
21 Residual standard error: 3675 on 345 degrees of freedom
Multiple R-squared: 0.8659, Adjusted R-squared:
_{23} F-statistic: 318.3 on 7 and 345 DF, p-value: < 2.2e-16
```

```
1 Call:
2 lm(formula = count ~ poly(temp, 3) + ws + vis + humi + sr, data = df_day_f)
4 Residuals:
       Min
                 1Q
                       Median
                                     3Q
  -13732.0
            -2557.4
                        -24.1
                                 3004.0
                                         10677.8
8 Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
                              2.636e+03
                                           6.522 \ 2.47e - 10 ***
10 (Intercept)
                   1.719e+04
poly (temp, 3)1
                  1.087e + 05
                              8.241e+03
                                         13.194 < 2e-16 ***
poly (temp, 3)2 -3.810e+04
                                          -8.027 1.58e-14 ***
                              4.747e+03
                                                 < 2e-16 ***
poly (temp, 3)3 -4.008e+04
                              4.468e+03
                                          -8.971
14 WS
                  -1.757e+03
                              4.385e+02
                                          -4.006 7.56e-05 ***
                  1.437e+00
                              6.359e-01
                                           2.260
                                                  0.02443 *
15 Vis
                              2.797e+01
                                         -3.103
                                                  0.00207 **
                  -8.678e+01
16 humi
                  1.113e+04
                              1.249e+03
                                           8.916
                                                  < 2e-16 ***
18 —
19 Signif. codes:
                               0.001
                                               0.01
                                                             0.05
                                                                           0.1
      1
20
21 Residual standard error: 4341 on 345 degrees of freedom
Multiple R-squared: 0.813, Adjusted R-squared: 0.8092
_{23} F-statistic: 214.2 on 7 and 345 DF, p-value: < 2.2e-16
```

• anova(m10)

```
1 Analysis of Variance Table
3 Response: count
                     Df
                              Sum Sq
                                           Mean Sq F value Pr(>F)
                       3\ 2.2694\,\mathrm{e}{+10}\ 7564506564\ 401.4640\ <\!2\mathrm{e}{-16}\ ***
5 poly (temp, 3)
                       18.9826e+05
                                             898262
                                                        0.0477 \ 0.8273
6 WS
7 vis
                       1 \ 1.6282e + 09 \ 1628179302
                                                       86.4108 <2e-16 ***
                       1\ 2.4381\,\mathrm{e}{+09}\ 2438111560\ 129.3956\ {<}2\mathrm{e}{-16}\ ***
8 humi
9 S T
                       1 \ 1.4977e + 09 \ 1497726233
                                                       79.4874 < 2e-16 ***
10 Residuals
                    345 \quad 6.5006 \, e{+09}
                                          18842303
12 Signif. codes:
                                                                          0.05
                                                                                           0.1
                      0
                                      0.001
                                                          0.01
                             ***
```

```
Call:
lm(formula = count ~ poly(temp, 3) + ws + vis + humi * rf + sr,
data = df_day_f)

Residuals:
```

```
Min 1Q Median
                             3Q
                                   Max
  -16018
         -2102
                    -39
                           2617
                                   8692
  Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
  (Intercept)
                   1.408e+04
                               2.247e+03
                                            6.264 \quad 1.12e-09 \quad ***
poly (temp, 3)1
                   1.204e+05
                                7.075e+03
                                           17.025
                                                    < 2e-16 ***
                                                    < 2e-16 ***
poly (temp, 3)2 -4.180e+04
                               4.057e+03
                                          -10.303
14 poly (temp, 3)3 -4.931e+04
                                3.864e+03
                                          -12.762
                                                   < 2e-16 ***
                   -1.427e+03
                                3.748e + 02
                                           -3.808 \ 0.000166 ***
                                            3.831 0.000152 ***
16 Vis
                   2.076e+00
                                5.419e-01
17 humi
                   -7.839e+00
                                2.461e+01
                                           -0.318 \ 0.750306
                   -5.279e+02
                                2.119e+02
                                            -2.491 0.013201
18 rf
                   7.570e+03
                                1.106e+03
                                            6.846 \ \ 3.52e-11 \ ***
20 humi: rf
                   3.191e+00
                               2.331e+00
                                            1.369 0.171947
                                                 0.01
22 Signif. codes:
                                 0.001
                                                               0.05
                                                                             0.1
      1
24 Residual standard error: 3675 on 343 degrees of freedom
Multiple R-squared: 0.8667, Adjusted R-squared: 0.8632
_{26} F-statistic: 247.8 on 9 and 343 DF, p-value: < 2.2e-16
```

```
1 Call:
_{2} lm(formula = count ~ temp + maxt + mint + humi + ws + vis + dp +
       sr + rf + sf + season + holiday + day + month + weekday,
       data = df_day_f
  Residuals:
                 1Q
                      Median
                                    3Q
                                            Max
       Min
   -9473.1 \quad -1491.4
                       110.6
                               1638.2
                                         9590.4
10 Coefficients: (3 not defined because of singularities)
                          Estimate Std. Error t value Pr(>|t|)
(Intercept)
                       23070.7042
                                     7889.6620
                                                   2.924 \ 0.003722
                         -379.5883
                                      461.7296
                                                  -0.822 \quad 0.411686
13 temp
14 maxt
                          125.1924
                                      235.8594
                                                   0.531 \ \ 0.595963
15 mint
                           42.2086
                                      230.0587
                                                   0.183 \ \ 0.854556
16 humi
                         -152.2149
                                        86.4752
                                                  -1.760 \ 0.079411
                         -885.1999
                                      389.5889
                                                  -2.272 \ 0.023800
17 WS
18 Vis
                            0.6088
                                         0.6366
                                                   0.956 \ 0.339713
19 dp
                          588.4475
                                      313.3823
                                                   1.878 \ 0.061408
                                                   7.177 \quad 5.83e - 12 \quad ***
20 ST
                        9886.9275
                                     1377.5723
21 rf
                         -179.4958
                                        19.6408
                                                  -9.139
                                                          < 2e-16 ***
22 Sf
                          -37.2454
                                        22.0166
                                                  -1.692 \quad 0.091763
23 seasonSpring
                                     1157.9549
                          140.4727
                                                   0.121 \ 0.903528
24 seasonSummer
                        -6161.4508
                                     1685.0788
                                                  -3.656 \ 0.000303 \ ***
25 seasonWinter
                       -7318.2843
                                     1034.2914
                                                  -7.076 \ 1.09e-11 ***
26 holidayNo Holiday
                        3395.4499
                                      848.0049
                                                   4.004 \quad 7.89e-05
27 day 02
                        -1894.2937
                                     1331.2350
                                                  -1.423 0.155808
28 day03
                         -362.1915
                                     1322.4814
                                                  -0.274 0.784375
29 day04
                                     1332.4378
                          107.1957
                                                   0.080 \ \ 0.935933
30 day 05
                        -1213.9176
                                     1300.2029
                                                  -0.934 \ 0.351257
31 day 06
                          206.3044
                                     1325.3561
                                                   0.156 \ 0.876408
32 day07
                                                   0.120 \ 0.904444
                          155.9601
                                     1298.0147
33 day 08
                         -382.7406
                                     1292.2038
                                                  -0.296 0.767292
34 day 09
                        -1583.5906
                                     1378.7009
                                                  -1.149 \ 0.251650
35 day10
                          617.0440
                                     1333.3044
                                                   0.463 \ 0.643855
36 day11
                          -55.0031
                                     1334.3872
                                                  -0.041 0.967149
```

```
37 day12
                        -361.2169
                                    1298.3857
                                                 -0.278 \ 0.781051
38 day13
                        2014.7812
                                    1310.2779
                                                  1.538 \ 0.125204
39 day14
                         218.6607
                                    1313.4066
                                                  0.166 \ 0.867891
40 day15
                        -570.5983
                                    1277.8693
                                                 -0.447 \ 0.655548
41 day16
                       -1488.4604
                                    1285.1826
                                                 -1.158\ 0.247734
42 day17
                                    1297.4954
                         284.9347
                                                  0.220 \ 0.826332
43 day18
                        -980.4704
                                    1335.3576
                                                 -0.734 0.463389
44 day19
                          69.7684
                                    1325.7892
                                                  0.053 \ 0.958067
45 day 20
                         -32.4808
                                    1310.7544
                                                 -0.025 0.980247
46 day21
                        -332.0609
                                    1306.5418
                                                 -0.254 \ 0.799555
47 day 22
                       -1808.4021
                                    1278.5063
                                                 -1.414 0.158284
48 day23
                        -533.7216
                                    1302.4663
                                                 -0.410 0.682267
49 day24
                        -726.0757
                                    1295.1495
                                                 -0.561 0.575489
50 day25
                         293.5779
                                    1295.1188
                                                  0.227 \ \ 0.820830
51 day26
                       -1048.4304
                                    1315.7602
                                                 -0.797 \quad 0.426196
52 day 27
                         336.0931
                                                  0.254 \ 0.799458
                                    1321.7511
53 day 28
                                                  0.245 \ \ 0.806648
                         328.5614
                                    1341.2162
54 day 29
                         -78.8384
                                    1328.6772
                                                 -0.059 0.952725
55 day 30
                        -564.7723
                                    1367.0551
                                                 -0.413 \ 0.679812
                                    1516.4714
56 day31
                        101.2367
                                                 0.067 \ 0.946820
57 month 02
                       -1986.2542
                                     870.5691
                                                 -2.282 \ 0.023230
58 month 03
                       -7327.8119
                                    1043.6421
                                                 -7.021 1.53e-11
59 month 04
                       -3389.3494
                                     921.1000
                                                 -3.680 \ 0.000278
60 month 05
                               NA
                                            NA
                                                     NA
                                                               NA
                                                  9.932
61 month 06
                        9636.5764
                                     970.2374
                                                         < 2e-16 ***
62 month 07
                        2206.7367
                                     820.1438
                                                  2.691\ 0.007539
63 month 08
                               NA
                                            NA
                                                     NA
                                                               NA
                                    1408.4871
                        1011.5896
64 month 09
                                                  0.718
                                                        0.473198
                        2626.1575
                                    1003.4244
65 month 10
                                                  2.617
                                                        0.009324
66 month11
                               NA
                                            NA
                                                     NA
                                                               NA
67 month12
                       1568.1051
                                     823.4524
                                                  1.904 \ 0.057846
68 weekdayMonday
                        -732.2716
                                     623.0599
                                                 -1.175 0.240832
69 weekdaySaturday
                       -2046.5414
                                     626.7477
                                                 -3.265 \ 0.001223 \ **
70 weekdaySunday
                       -2936.6500
                                     632.5886
                                                 -4.642 5.20 e -06 ***
                         -47.8282
71 weekdayThursday
                                     632.6914
                                                 -0.076 0.939793
72 weekdayTuesday
                          -8.9953
                                     643.1067
                                                 -0.014 0.988850
  weekdayWednesday
                         -98.2500
                                     641.3217
                                                 -0.153 \ 0.878346
74
  Signif. codes:
                                  0.001
                                                   0.01
                                                                  0.05
                                                                                 0.1
       1
77 Residual standard error: 3098 on 294 degrees of freedom
Multiple R-squared: 0.9188, Adjusted R-squared:
_{79} F-statistic: 57.37 on 58 and 294 DF, p-value: < 2.2e-16
```

\bullet anova(m0,m2,m3,m4,m5,m6,m7,m8,m9,m10)

```
Analysis of Variance Table
   з Model
                                                              1: \operatorname{count} \sim \operatorname{temp} + \operatorname{maxt} + \operatorname{mint} + \operatorname{humi} + \operatorname{ws} + \operatorname{vis} + \operatorname{dp} + \operatorname{sr} + \operatorname{rf} + \operatorname{maxt} + \operatorname{mint} + \operatorname{humi} + \operatorname{ws} + \operatorname{vis} + \operatorname{dp} + \operatorname{sr} + \operatorname{rf} + \operatorname{maxt} + \operatorname{mint} + \operatorname{humi} + \operatorname{ws} + \operatorname{vis} + \operatorname{dp} + \operatorname{sr} + \operatorname{rf} + \operatorname{maxt} + \operatorname{mint} + \operatorname{humi} + \operatorname{ws} + \operatorname{vis} + \operatorname{dp} + \operatorname{sr} + \operatorname{rf} + \operatorname{maxt} + \operatorname{mint} + \operatorname{humi} + \operatorname{ws} + \operatorname{vis} + \operatorname{dp} + \operatorname{sr} + \operatorname{rf} + \operatorname{mint} + \operatorname{min
                                              sf + season + holiday + day + month + weekday
   5 Model
                                                                     2: count
                                                                                                                                                     temp + humi + ws + vis + dp + sr + rf + sf
                                                                                                                                        \tilde{\phantom{a}} temp + ws + vis + humi + sr + rf + sf
   6 Model
                                                                     3: count
                                                                                                                                                     temp + ws + vis + humi + sr + rf + if\_snow
   7 Model
                                                                     4: count
               Model
                                                                                                                                                      temp + ws + vis + humi + sr + rf + if\_snow
                                                                     5:
                                                                                         count
                                                                                                                                                        poly(temp, 3) + ws + vis + sr + rf + sf
              Model
                                                                     6: count
10 Model
                                                                                                                                                       poly(temp, 3) + ws + vis + sr + rf + if\_snow
                                                                     7: count
                                                                                                                                                       poly(temp, 3) + ws + vis + sr + rf + if_snow
11 Model
                                                                     8: count
                                                                                                                                                     poly(temp, 3) + ws + vis + sr + rf
                                                                     9: count
                                                                                                                                      \sim poly(temp, 3) + ws + vis + humi + sr
Model 10: count
                                                                                                                                                RSS Df Sum of Sq F Pr(>F)
                 Res. Df
```

```
15 1
         294 2821980500
16 2
         344 8209438726
                         -50
                              -5387458226
                                            11.2255 < 2e-16 ***
17 3
         345 8241208441
                          -1
                                -31769715
                                              3.3098 \ 0.06988 .
18 4
         345 8239278062
                            0
                                   1930379
         345 8239278062
                            0
19 5
                                         0
                               3580534266
                                           373.0278 < 2e-16 ***
  6
         344 4658743796
                            1
20
  7
         344 4658795966
                            0
21
                                    -52170
         344 4658795966
                            0
                                         0
22 8
23 9
                                  -1588438
                                              0.1655 \ 0.68445
         345 4660384404
                           -1
24 10
         345 6500594706
                            0
                              -1840210302
26 Signif. codes:
                                  0.001
                                                  0.01
                                                                 0.05
                                                                                0.1
  1
```

```
_{2} \operatorname{lm}(\operatorname{formula} = \operatorname{count} \ \widetilde{\ } \operatorname{poly}(\operatorname{temp}, \ 3) + \operatorname{ws} + \operatorname{vis} + \operatorname{sr} + \operatorname{rf} + \operatorname{month} +
       season, data = df_day_f
  Residuals:
        Min
                                           3Q
                     1Q
                           Median
                                                     Max
  -13933.5
               -1466.2
                            404.4
                                      1741.7
                                                  9820.8
  Coefficients: (3 not defined because of singularities)
9
                       Estimate Std. Error t value Pr(>|t|)
11 (Intercept)
                      1.039e+04
                                   1.023e+03
                                                10.158 < 2e-16 ***
12 poly (temp, 3)1
                     9.950e+04
                                    1.227e+04
                                                   8.107 9.92e-15 ***
13 poly (temp, 3)2 -3.400e+04
                                    5.391e+03
                                                 -6.307 9.00e{-10} ***
                                                          < 2e-16 ***
poly (temp, 3)3 -3.705e+04
                                    4.040e+03
                                                 -9.171
                                    3.065e+02
                                                 -2.134\ 0.033551\ *
15 WS
                     -6.542e+02
16 vis
                      1.595e+00
                                    4.361\,\mathrm{e}{-01}
                                                   3.659
                                                          0.000295 ***
17 S T
                      9.549e+03
                                    8.517e+02
                                                 11.212
                                                           < 2e-16 ***
                                                -13.448 < 2e-16 ***
18 rf
                     -2.206e+02
                                    1.640e+01
19 month 02
                     -2.225e+03
                                    8.240e+02
                                                 -2.700 \ 0.007291 \ **
20 month 03
                     -2.562e+03
                                    1.031e+03
                                                 -2.484 \ 0.013463
21 month 04
                     -1.006e+03
                                    1.256e+03
                                                 -0.801 0.423799
22 month 05
                      1.647e + 03
                                    1.462e+03
                                                   1.126 \ 0.260786
23 month 06
                      5.604e+03
                                    1.650e+03
                                                   3.397 \quad 0.000762
24 month 07
                      1.734e+03
                                    1.833e+03
                                                   0.946 \ \ 0.344791
25 month 08
                      2.917e+02
                                    1.914e+03
                                                   0.152 \ 0.878992
26 month 09
                      1.715e+03
                                    1.674e+03
                                                   1.025 \ 0.306199
27 month 10
                      4.973e+03
                                    1.264e+03
                                                   3.935 0.000101 ***
28 month11
                      4.799e+03
                                    9.911e+02
                                                   4.842 \quad 1.97e - 06 \quad ***
29 month12
                      1.383e + 03
                                    7.636e+02
                                                   1.811 0.071079
30 seasonSpring
                               NA
                                            NA
                                                      NA
                                                                 NA
  seasonSummer
                               NA
                                            NA
                                                      NA
                                                                 NA
                                            NA
32 seasonWinter
                              NA
                                                      NA
                                                                 NA
33
                                                                        0.05
  Signif. codes:
                                     0.001
                                                        0.01
                                                                                        0.1
       1
Residual standard error: 2922 on 334 degrees of freedom
Multiple R-squared: 0.918, Adjusted R-squared:
_{38} F-statistic: 207.6 on 18 and 334 DF, p-value: < 2.2e-16
```

```
5 Residuals:
       Min
                  1Q
                        Median
                                       3Q
                                               Max
  -16165.7
             -1796.9
                          312.9
                                   2181.9
                                             7598.3
  Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
                    1.497e + 04
                                9.351e+02
                                            16.008
                                                     < 2e-16 ***
(Intercept)
                                                     < 2e-16 ***
poly (temp, 3)1
                    8.580e+04
                                8.020e+03
                                            10.698
poly (temp, 3)2 -4.688e+04
                                5.142e+03
                                            -9.116
                                                     < 2e-16 ***
14 poly (temp, 3)3 -4.820e+04
                                3.554e+03
                                            -13.562
                                                     < 2e-16 ***
                   -9.924e+02
                                3.357e+02
                                            -2.956
                                                     0.00334 **
15 WS
                    9.844e\!-\!01
                                4.365\,\mathrm{e}\!-\!01
                                              2.255
                                                     0.02474 *
16 vis
17 S T
                    1.007e+04
                                8.892e+02
                                            11.330
                                                     < 2e-16 ***
18 rf
                   -2.272e+02
                                1.803e+01
                                            -12.600
                                                     < 2e-16 ***
                   -4.808e+03
                                5.670e+02
                                            -8.480 \ 6.85e - 16 ***
19 seasonSpring
                                             0.615
                                                     0.53867
                    4.811e+02
                                7.817e+02
20 seasonSummer
21 seasonWinter
                   -3.813e+03
                                8.496e+02
                                            -4.488 9.83e-06 ***
22
23 Signif. codes:
                    0
                         ***
                                 0.001
                                                  0.01
                                                                 0.05
                                                                               0.1
       1
25 Residual standard error: 3286 on 342 degrees of freedom
Multiple R-squared: 0.8937, Adjusted R-squared:
_{27} F-statistic: 287.6 on 10 and 342 DF, p-value: < 2.2\,\mathrm{e}{-16}
```

```
1 Call:
_{2} \ln(\text{formula} = \text{count} \ \tilde{} \text{poly}(\text{temp}, 3) + \text{ws} + \text{vis} + \text{sr} + \text{rf} + \text{season} +
       fd, data = df_-day)
  Residuals:
                   1Q
                                        3Q
        Min
                         Median
                                                 Max
  -16012.0
             -1825.2
                          351.3
                                    2130.9
                                              8713.6
  Coefficients:
9
                      Estimate Std. Error t value Pr(>|t|)
11 (Intercept)
                    -9.321e+03
                                 1.314e+03
                                             -7.094 7.17e-12 ***
poly (temp, 3)1
                    8.397e+04
                                 8.015e+03
                                              10.476
                                                       < 2e-16 ***
poly (temp, 3)2 -4.792e+04
                                 5.217e+03
                                              -9.184
                                                      < 2e-16 ***
14 poly (temp, 3)3 -4.757e+04
                                 3.586e+03
                                             -13.265
                                                      < 2e-16 ***
                                                        0.0118 *
15 WS
                    -8.378e+02
                                 3.308e+02
                                             -2.533
16 vis
                    7.617e - 01
                                 4.297e - 01
                                              1.773
                                                        0.0772 .
17 ST
                    1.015e+04
                                 8.822e+02
                                              11.501
                                                       < 2e-16 ***
18 rf
                    -2.238e+02
                                 1.804e+01
                                             -12.412
                                                       < 2e-16 ***
19 seasonSpring
                    -4.921e+03
                                 5.642e+02
                                              -8.724
                                                       < 2e-16 ***
                                 7.830e + 02
                                               0.740
                                                        0.4598
20 seasonSummer
                     5.794e+02
21 seasonWinter
                    -4.084e+03
                                 8.489e + 02
                                              -4.811 \ 2.23e-06 ***
22 fdYes
                    2.451e+04
                                 1.012e+03
                                              24.214
                                                      < 2e-16 ***
  Signif. codes:
                                   0.001
                                                    0.01
                                                                   0.05
       1
26 Residual standard error: 3306 on 353 degrees of freedom
Multiple R-squared: 0.8993, Adjusted R-squared: 0.8961
_{28} F-statistic: 286.5 on 11 and 353 DF, p-value: < 2.2e-16
```

• anova(m14,m15)

```
1 Analysis of Variance Table
3 Model 1: count ~ poly(temp, 3) + ws + vis + sr + rf + season + fd
4 Model 2: count ~ poly(temp, 3) + ws + vis + sr + rf + season
                  RSS Df
                           Sum of Sq
                                           \mathbf{F}
   Res. Df
                                                 Pr(>F)
       353 \ 3.8585e+09
       354\ 1.0267e + 10\ -1\ -6408538704\ 586.29 < 2.2e - 16 ***
9 Signif. codes:
                  0
                                0.001
                                                0.01
                                                              0.05
                                                                            0.1
                        ***
 1
```

• M16

```
1 Call:
_{2} lm(formula = count \sim poly(temp, 3) + ws + vis + sr + rf + season +
      fd, data = df_day_no)
5 Residuals:
      Min
                1Q Median
                                  3Q
                                         Max
  -9146.2 -1897.7
                      292.9
                              2028.5
                                      8729.0
9 Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
11 (Intercept)
                   -9.855e+03
                               1.229e+03
                                           -8.016 \ 1.65 \,\mathrm{e}{-14} \ ***
poly (\text{temp}, 3)1 8.592 e+04
                                7.476e+03
                                            11.492
                                                    < 2e-16 ***
poly (temp, 3)2 -5.291e+04
                                                    < 2e-16 ***
                                4.915e+03
                                           -10.763
14 poly (temp, 3)3 -5.035e+04
                                3.362e+03
                                           -14.975
                                                    < 2e-16 ***
                   -7.093e+02
                                3.109e+02
                                            -2.281
                                                     0.02312 *
15 WS
16 Vis
                   1.144e+00
                                4.046e-01
                                             2.827
                                                     0.00498 **
                    9.127e+03
                                8.452e+02
                                            10.799
                                                    < 2e-16 ***
17 Sr
18 rf
                   -2.351e+02
                                1.694e+01
                                           -13.880
                                                    < 2e-16 ***
                   -4.828e+03
                                5.300e+02
                                            -9.109
                                                    < 2e-16 ***
19 seasonSpring
                                7.471e+02
                                            1.755
20 seasonSummer
                   1.311e+03
                                                     0.08019
21 seasonWinter
                   -3.914e+03
                                7.924e+02
                                            -4.939 \, 1.22 \, \mathrm{e}{-06} \, ***
22 fdYes
                   2.471e+04
                                9.455e+02
                                           26.140
                                                    < 2e-16 ***
23 -
24 Signif. codes:
                                 0.001
                                                  0.01
                                                                0.05
                                                                              0.1
      1
26 Residual standard error: 3084 on 350 degrees of freedom
Multiple R-squared: 0.9128, Adjusted R-squared: 0.91
_{28} F-statistic: 332.9 on 11 and 350 DF, p-value: < 2.2e-16
```

```
2 lm(formula = count ~ poly(temp, 3) + ws + vis + sr + rf + season +
       fd, data = df_day_no2)
5 Residuals:
       Min
                  1Q Median
                                                Max
                                       3Q
  -8770.7 -1892.8
                         275.1
                                 1948.7
                                             6587.8
  Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
11 (Intercept)
                      -1.071e+04 1.210e+03 -8.853 < 2e-16 ***
12 \text{ poly} (\text{temp}, 3)1 \quad 8.707 \, \text{e} + 04 \quad 7.220 \, \text{e} + 03 \quad 12.060 \quad < 2 \, \text{e} - 16 \quad ***
```

```
poly (temp, 3)2 -5.387e+04
                                4.754e+03 -11.330 < 2e-16 ***
14 poly (temp, 3)3 -5.173e+04
                                3.256e+03
                                           -15.886
                                                     < 2e-16 ***
                   -8.290\,\mathrm{e}{+02}
                                3.043e+02
                                            -2.724 \ 0.006776 **
16 vis
                    1.313e+00
                                3.926e-01
                                              3.345 0.000912 ***
                    8.837e + 03
                                 8.192e+02
                                             10.787
                                                     < 2e-16 ***
17 S T
                                                      < 2e-16 ***
18 rf
                   -2.368e+02
                                 1.653e+01
                                            -14.327
19 seasonSpring
                                 5.154e + 02
                                             -9.219
                                                     < 2e-16 ***
                   -4.752e+03
20 seasonSummer
                                 7.300e+02
                                              1.993 0.047063 *
                    1.455e+03
21 seasonWinter
                   -3.785e+03
                                7.666e+02
                                             -4.937 \quad 1.23 \,\mathrm{e}{-06} \quad ***
22 fdYes
                    2.563e+04
                                 9.500e+02
                                             26.983
                                                     < 2e-16 ***
24 Signif. codes:
                                  0.001
                                                   0.01
                                                                 0.05
                                                                                0.1
       1
26 Residual standard error: 2979 on 347 degrees of freedom
Multiple R-squared: 0.9184, Adjusted R-squared:
_{28} F-statistic: 354.9 on 11 and 347 DF, p-value: < 2.2e-16
```

```
1 Call:
_{2} lm(formula = count \sim poly(temp, 3) + ws + vis + sr + rf + season +
      fd + holiday, data = df_day_no2)
  Residuals:
      Min
                1Q
                    Median
                                 3Q
                                         Max
  -8839.8 -1930.7
                      179.2
                             1918.2
                                      8258.4
  Coefficients:
9
                        Estimate Std. Error t value Pr(>|t|)
                                                      < 2e-16 ***
11 (Intercept)
                                  1.408e+03
                                              -9.337
                      -1.314e+04
                                  7.142e+03
12 poly (temp, 3)1
                       8.881e+04
                                              12.435
                                                       < 2e-16 ***
13 poly (temp, 3)2
                      -5.505e+04
                                  4.704e+03 -11.702
                                                       < 2e-16 ***
14 poly (temp, 3)3
                      -5.128e+04
                                   3.215e+03
                                             -15.947
                                                       < 2e-16 ***
15 WS
                      -7.908e+02
                                   3.004e+02
                                               -2.632\ 0.008862\ **
                       1.368e+00
                                   3.876e - 01
                                               3.530 0.000473 ***
16 Vis
17 S T
                       8.885e+03
                                   8.083e+02
                                              10.993
                                                       < 2e-16 ***
18 rf
                      -2.362e+02
                                   1.631e+01
                                             -14.485
                                                       < 2e-16 ***
19 seasonSpring
                      -4.780e+03
                                   5.085e+02
                                               -9.400
                                                      < 2e-16 ***
20 seasonSummer
                       1.374e+03
                                   7.205e+02
                                               1.906 \ 0.057427
21 seasonWinter
                      -3.469e+03
                                   7.624e+02
                                               -4.550 7.44e-06 ***
22 fdYes
                       2.553e+04
                                   9.376e+02
                                              27.227
                                                       < 2e-16 ***
23 holidayNo Holiday
                      2.418e+03
                                  7.425e+02
                                               3.257 0.001237 **
25 Signif. codes:
                                0.001
                                                                             0.1
                                                 0.01
                                                               0.05
      1
27 Residual standard error: 2938 on 346 degrees of freedom
Multiple R-squared: 0.9208, Adjusted R-squared: 0.9181
_{29} F-statistic: 335.2 on 12 and 346 DF, p-value: < 2.2e-16
```

• Plot(m18)

```
Call:

lm(formula = count ~ poly(temp, 3) + ws + vis + sr + rf + season +
month + fd + holiday, data = df_day_no2)

Residuals:
Min 1Q Median 3Q Max
```


(d) Residuals vs Leverage

Figure 27: Plots for Model 18

```
_{7} -8109.0 -1362.8 252.7 1641.9 8713.1
  Coefficients: (3 not defined because of singularities)
                        Estimate Std. Error t value Pr(>|t|)
10
11 (Intercept)
                      -13036.864
                                    1306.426
                                              -9.979 < 2e-16 ***
                                                8.637 \ 2.32e-16 ***
12 poly (temp, 3)1
                       93703.703
                                   10849.251
13 poly (temp, 3)2
                      -45172.884
                                    5036.286
                                               -8.969
                                                       < 2e-16 ***
14 poly (temp, 3)3
                      -41267.766
                                    3670.298 -11.244
                                                       < 2e-16 ***
15 WS
                        -470.232
                                     273.107
                                               -1.722
                                                       0.08602 .
16 vis
                           1.740
                                        0.385
                                                4.521 \ 8.53e-06 ***
                        8744.199
                                     761.837
                                               11.478
                                                       < 2e-16 ***
17 Sr
                        -229.643
                                      14.850 -15.464
                                                       < 2e-16 ***
18 rf
19 seasonSpring
                       -2909.954
                                     950.310
                                               -3.062
                                                        0.00237 **
20 seasonSummer
                       -2255.772
                                    1480.072
                                               -1.524
                                                        0.12842
21 seasonWinter
                       -4720.338
                                     879.275
                                               -5.368 1.48e-07 ***
22 month 02
                       -1973.046
                                     734.561
                                               -2.686
                                                       0.00759 **
                                     898.878
23 month 03
                       -4531.055
                                               -5.041 7.57e-07 ***
24 month 04
                       -2927.995
                                     735.011
                                               -3.984 8.32e-05 ***
25 month 05
                              NA
                                           NA
                                                   NA
                                                             NA
26 month 06
                        3817.478
                                     940.749
                                                4.058 \ 6.15e-05 ***
27 month 07
                        1259.023
                                     700.278
                                                1.798
                                                        0.07309
28 month 08
                                           NA
                                                   NA
                                                             NA
                        -2276.685
                                    1125.778
                                                -2.022
                                                        0.04393 *
29 month 09
30 month 10
                         133.062
                                     800.271
                                                0.166
                                                        0.86804
31 month11
                              NA
                                          NA
                                                   NA
                                                             NA
32 month12
                        1605.865
                                     682.711
                                                2.352
                                                        0.01924 *
33 fdYes
                       25271.002
                                     832.467
                                               30.357
                                                        < 2e-16 ***
34 holidayNo Holiday
                        2682.213
                                     662.940
                                                4.046 \quad 6.46 \,\mathrm{e}{-05} \ ***
36
  Signif. codes:
                                 0.001
                                                  0.01
                                                                0.05
                                                                              0.1
38 Residual standard error: 2605 on 338 degrees of freedom
Multiple R-squared: 0.9392, Adjusted R-squared: 0.9356
40 F-statistic: 260.9 on 20 and 338 DF, p-value: < 2.2e-16
```

• anova(m17,m18)

```
1 Analysis of Variance Table
3 \mod 1: count \sim poly(temp, 3) + ws + vis + sr + rf + season + fd
4 Model 2: count ~ poly(temp, 3) + ws + vis + sr + rf + season + fd + holiday
   Res. Df
                  RSS Df Sum of Sq
                                         \mathbf{F}
                                            Pr(>F)
      347 3078660706
6 1
      346 2987079616
                      1 91581090 10.608 0.001237 **
9 Signif. codes:
                               0.001
                                               0.01
                                                             0.05
                                                                           0.1
```

```
11 (Intercept)
                                      1351.370 -13.140 < 2e-16 ***
                       -17757.202
poly (temp, 3)1
                        93703.703
                                    10849.251
                                                  8.637 \ 2.32e-16 ***
13 poly (temp, 3)2
                       -45172.884
                                      5036.286
                                                 -8.969
                                                         < 2e-16 ***
14 poly (temp, 3)3
                       -41267.766
                                      3670.298
                                                -11.244
                                                          < 2e-16 ***
                         -470.232
                                                 -1.722
                                                          0.08602 .
15 WS
                                       273.107
16 vis
                            1.740
                                         0.385
                                                  4.521
                                                         8.53e - 06 ***
                         8744.199
                                                 11.478
                                                          < 2e-16 ***
17 S T
                                       761.837
18 rf
                         -229.643
                                       14.850
                                                -15.464
                                                          < 2e-16 ***
                                                 -2.686
19 \quad month 02
                        -1973.046
                                       734.561
                                                          0.00759 **
20 month 03
                        -2720.671
                                       917.526
                                                 -2.965
                                                          0.00324 **
21 month 04
                        -1117.611
                                      1114.400
                                                 -1.003
                                                          0.31664
22 month 05
                         1810.384
                                      1287.195
                                                  1.406
                                                          0.16051
23 month 06
                         6282.044
                                      1460.889
                                                  4.300
                                                         2.24e-05 ***
24 month 07
                         3723.589
                                      1649.254
                                                  2.258
                                                          0.02460
25 month 08
                         2464.566
                                      1732.189
                                                  1.423
                                                          0.15572
26 month 09
                                      1460.576
                         2443.653
                                                  1.673
                                                          0.09524
27 month 10
                                                  4.321 \ 2.04e-05 ***
                         4853.400
                                      1123.083
28 month11
                         4720.338
                                       879.275
                                                  5.368 \ 1.48e - 07 ***
29 month 12
                         1605.865
                                       682.711
                                                  2.352
                                                          0.01924 *
                        25271.002
30 fdYes
                                       832.467
                                                 30.357
                                                          < 2e-16 ***
31 holidayNo Holiday
                         2682.213
                                       662.940
                                                  4.046 \quad 6.46 \,\mathrm{e}{-05} \ ***
                                  0.001
                                                                  0.05
  Signif. codes:
                          ***
                                                   0.01
                                                                                 0.1
33
       1
34
Residual standard error: 2605 on 338 degrees of freedom
Multiple R-squared: 0.9392, Adjusted R-squared:
_{37} F-statistic: 260.9 on 20 and 338 DF, p-value: < 2.2e-16
```

• anova(m20)

```
Analysis of Variance Table
3 Response: count
                    \mathrm{Df}
                            Sum Sq
                                        Mean Sq
                                                    F value
                                                                 \Pr(>F)
5 poly (temp, 3)
                     3\ 2.1232e+10
                                     7077267032
                                                  1042.5483 < 2.2e-16 ***
                     1.2182e+07
                                       12182224
                                                      1.7946
                                                                  0.1813
6 WS
                                                   168.4196 \; < \; 2.2\,\mathrm{e}{-16} \; ***
7 vis
                       1.1433e+09 1143304553
                     1
                                                   489.3150 < 2.2e-16 ***
  sr
                     1
                       3.3217e+09 \ 3321680744
9 r f
                     1
                       1.4889e+09 1488947867
                                                   219.3361 < 2.2e-16 ***
10 month
                    11 \ 1.7858e+09
                                      162346628
                                                    23.9152 < 2.2e-16 ***
                                                   931.7400 < 2.2e-16 ***
11 fd
                     1 6.3251e + 09 6325052193
                                                    16.3696 \quad 6.463 \,\mathrm{e}{-05} \ ***
12 holiday
                     1 1.1112e + 08
                                      111123928
13 Residuals
                   338 \ 2.2945e+09
                                        6788431
14
15 Signif. codes:
                     0
                                    0.001
                                                      0.01
                                                                     0.05
                                                                                     0.1
       1
```

• anova(m18)

```
Analysis of Variance Table
2
3 Response: count
                   Df
                                       Mean Sq F value
                           Sum Sq
5 poly (temp, 3)
                    3\ 2.1232e+10\ 7077267032\ 819.7754 < 2.2e-16 ***
                    1.2182e+07
                                      12182224
                                                  1.4111
                                                           0.235690
6 WS
 vis
                    1
                       1.1433e+09 1143304553 132.4315 < 2.2e-16 ***
                      3.3217e+09 3321680744 384.7576 < 2.2e-16 ***
8 S T
                    1
9 rf
                    1 \ 1.4889 \,\mathrm{e} + 09 \ 1488947867 \ 172.4681 < 2.2 \,\mathrm{e} - 16 \ ***
                    3 9.7801e+08
                                   326004093
                                                37.7618 < 2.2e-16 ***
10 season
11 fd
                    1 6.4598e + 09 6459805588 748.2535 < 2.2e - 16 ***
```

• anova(m18,m20)

```
Analysis of Variance Table

Model 1: count ~ poly(temp, 3) + ws + vis + sr + rf + season + fd + holiday

Model 2: count ~ poly(temp, 3) + ws + vis + sr + rf + month + fd + holiday

Res.Df RSS Df Sum of Sq F Pr(>F)

1 346 2987079616

2 338 2294489538 8 692590077 12.753 4.801e-16 ***

Signif. codes: 0 *** 0.001 ** 0.05 . 0.1
```

• Variance inflation factor in M18

```
GVIF Df GVIF(1/(2*Df))
<sup>2</sup> poly (temp, 3) 17.204031 3
                                   1.606713
3 WS
                1.346724 1
                                    1.160484
                1.516114 1
                                    1.231306
4 vis
                2.678679 	 1
5 S T
                                    1.636667
6 r f
                1.532505 1
                                    1.237944
              16.510510 3
                                    1.595732
7 season
8 fd
               1.085814 1
                                    1.042024
9 holiday 1.034305 1
                                   1.017008
```

• Variance inflation factor in M20

```
GVIF Df GVIF(1/(2*Df))
                           2.165014
2 poly(temp, 3) 102.982818 3
                        1
      1.415424
3 WS
                                 1.189716
                1.901942 	 1
                                 1.379109
4 vis
                        1
               3.026527
5 ST
                                 1.739692
6 r f
               1.616558 	ext{1}
                                1.271439
7 month
             152.308165 11
                                1.256651
8 fd
              1.088535
                                1.043329
9 holiday 1.048478
                                1.023952
```

• Test for Curvature for M18

```
Test stat Pr(>|Test stat|)
2 poly (temp, 3)
                 0.1924
                                0.8475
3 WS
                -1.1863
                               0.2363
4 vis
5 S T
               -1.1651
                               0.2448
6 rf
                4.0555
                            6.189e - 05 ***
7 season
8 holiday
               4.6747
                            2.943e - 06 ***
9 Tukey test
10 -
11 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
1
```

• Test for Curvature for M21

```
Test stat Pr(>|Test stat|)
2 poly (temp, 3)
            0.0240
                         0.9809
             -1.3044
                         0.1930
4 vis
5 poly (rf, 2)
            -0.5554
                         0.5790
6 S r
7 season
8 holiday
9 Tukey test 4.2891 1.794e-05 ***
Signif. codes: 0 *** 0.001 ** 0.05 . 0.1
1
```

• Plot(m21)

Figure 28: Test curvature for M18

Figure 29: Test curvature for M21

(a) Residuals vs Fitted

(b) Normal Q-Q

 $\label{eq:Fitted values} \mbox{Im(count \sim poly(temp, 3) + ws + vis + poly(rf, 2) + sr + season + fd + holi ...}$

(c) Scale-Location

(d) Residuals vs Leverage

Figure 30: Plots for Model 21